4,236 research outputs found

    A Multinomial Model for the Quality Control of Colony Counting Procedures

    Get PDF
    The so-called good-laboratory-practice (GLP) test provides an experimental design and appropriate statistical analysis for the problem of analyst performance assessment in microbiological laboratories. For a given sample material multiple dilution series are generated yielding colony counts from several dilution levels. Statistical evaluation is based on the assumption of Poisson-distributed colony forming units. In this paper a new model based on conditional binomial and multinomial distributions is presented and it is shown how it is related to the standard model which assumes Poisson-distributed colony counts. The effects of common working errors on the statistical evaluation of the GLP-test are investigated

    A multinomial model for the quality control of colony counting procedures

    Full text link
    The so-called good-laboratory-practice (GLP) test provides an experimental design and appropriate statistical analysis for the problem of analyst performance assessment in microbiological laboratories. For a given sample material multiple dilution series are generated yielding colony counts from several dilution levels. Statistical evaluation is based on the assumption of Poisson-distributed colony forming units. In this paper a new model based on conditional binomial and multinomial distributions is presented and it is shown how it is related to the standard model which assumes Poisson-distributed colony counts. The effects of common working errors on the statistical evaluation of the GLP-test are investigated

    Dynamics of fully coupled rotators with unimodal and bimodal frequency distribution

    Full text link
    We analyze the synchronization transition of a globally coupled network of N phase oscillators with inertia (rotators) whose natural frequencies are unimodally or bimodally distributed. In the unimodal case, the system exhibits a discontinuous hysteretic transition from an incoherent to a partially synchronized (PS) state. For sufficiently large inertia, the system reveals the coexistence of a PS state and of a standing wave (SW) solution. In the bimodal case, the hysteretic synchronization transition involves several states. Namely, the system becomes coherent passing through traveling waves (TWs), SWs and finally arriving to a PS regime. The transition to the PS state from the SW occurs always at the same coupling, independently of the system size, while its value increases linearly with the inertia. On the other hand the critical coupling required to observe TWs and SWs increases with N suggesting that in the thermodynamic limit the transition from incoherence to PS will occur without any intermediate states. Finally a linear stability analysis reveals that the system is hysteretic not only at the level of macroscopic indicators, but also microscopically as verified by measuring the maximal Lyapunov exponent.Comment: 22 pages, 11 figures, contribution for the book: Control of Self-Organizing Nonlinear Systems, Springer Series in Energetics, eds E. Schoell, S.H.L. Klapp, P. Hoeve

    Symmetry-breaking transitions in networks of nonlinear circuit elements

    Full text link
    We investigate a nonlinear circuit consisting of N tunnel diodes in series, which shows close similarities to a semiconductor superlattice or to a neural network. Each tunnel diode is modeled by a three-variable FitzHugh-Nagumo-like system. The tunnel diodes are coupled globally through a load resistor. We find complex bifurcation scenarios with symmetry-breaking transitions that generate multiple fixed points off the synchronization manifold. We show that multiply degenerate zero-eigenvalue bifurcations occur, which lead to multistable current branches, and that these bifurcations are also degenerate with a Hopf bifurcation. These predicted scenarios of multiple branches and degenerate bifurcations are also found experimentally.Comment: 32 pages, 11 figures, 7 movies available as ancillary file

    Heterogeneous Delays in Neural Networks

    Full text link
    We investigate heterogeneous coupling delays in complex networks of excitable elements described by the FitzHugh-Nagumo model. The effects of discrete as well as of uni- and bimodal continuous distributions are studied with a focus on different topologies, i.e., regular, small-world, and random networks. In the case of two discrete delay times resonance effects play a major role: Depending on the ratio of the delay times, various characteristic spiking scenarios, such as coherent or asynchronous spiking, arise. For continuous delay distributions different dynamical patterns emerge depending on the width of the distribution. For small distribution widths, we find highly synchronized spiking, while for intermediate widths only spiking with low degree of synchrony persists, which is associated with traveling disruptions, partial amplitude death, or subnetwork synchronization, depending sensitively on the network topology. If the inhomogeneity of the coupling delays becomes too large, global amplitude death is induced

    Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    Get PDF
    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme

    Synchronisation in networks of delay-coupled type-I excitable systems

    Full text link
    We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.Comment: 10 pages, 9 figure

    Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

    Full text link
    The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Azimuthally anisotropic emission of low-momentum direct photons in Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of 0.4<pT<4.00.4<p_{T}<4.0 GeV/cc. At low pTp_T the second-order coefficients, v2v_2, are similar to the ones observed in hadrons. Third order coefficients, v3v_3, are nonzero and almost independent of centrality. These new results on v2v_2 and v3v_3, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.Comment: 552 authors, 15 pages, 9 figures, 3 tables, 2007 and 2010 data. v2 is version accepted for publication by Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects

    Full text link
    The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore