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Summary

The so-called good-laboratory-practice (GLP) test provides an experimental design and

appropriate statistical analysis for the problem of analyst performance assessment in

microbiological laboratories. For a given sample material multiple dilution series are

generated yielding colony counts from several dilution levels. Statistical evaluation is

based on the assumption of Poisson-distributed colony forming units. In this paper a

new model based on conditional binomial and multinomial distributions is presented and

it is shown how it is related to the standard model which assumes Poisson-distributed

colony counts. The e�ects of common working errors on the statistical evaluation of the

GLP-test are investigated.
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1 Introduction

Standardized colony counting procedures are essential for the microbiological

quality control of milk and milk products. The standardisation of an ana-

lytical technique requires the estimation of precision values like repeatabil-

ity within laboratories and its reproducibility between di�erent laboratories

according to (DIN ISO 5725, 1988). These values are estimated from col-

laborative studies with so-called routine laboratories. However, prerequisite
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for participation in a collaborative study of this kind is a thorough demon-

stration that the laboratory sta� involved performs the analytical technique

in an acceptable working standard. As a pro�ciency testing scheme for the

pour-plate technique Weiss, Nimel�ae and Arndt (1991) have introduced the

so-called good-laboratory-practice (GLP) test which includes an experimen-

tal design and appropriate statistical analysis. It provides both, a method for

estimating germ concentration and a quality assurance system for checking

whether the measurement technique in a laboratory was applied according

to an acceptable standard (IDF, 1994; BGA, 1991). By observing multiple

dilution series and inoculating several plates from the same dilution level

within laboratory errors can be detected and their sources identi�ed.

The main assumption underlying the statistical analysis of the GLP-test is

that faultless performance of the analytical technique procedures without any

working errors results in Poisson-distributed colony counts. Dahms (1996)

has extensively studied the evaluation strategy for the GLP-test. Using simu-

lation models re
ecting the di�erent steps of the experiment, she investigated

e�ects of ideal work and several combinations of working errors on the dis-

tribution of test statistics used in the GLP decision scheme. She reported

that even in the case of faultless work variability of counts is higher than ex-

pected in the Poisson model. Therefore, Dahms criticised the homogeneity

test as not adequate for assessing analyst performance and questioned the

appropriateness of this test in the context of a GLP evaluation.

In this article a new model for describing the distribution of colony counts

in the GLP-test is proposed which is based on the multinomial distribution.

It is shown how this model is connected to the Poisson model of Weiss et

al.. The e�ects of the working errors explored in the simulation studies of

Dahms are investigated within the context of the multinomial model and a
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new assessment for the performance of the GLP-test is derived.

After this introduction, Section 2 reviews the experimental design and the

statistical analysis of the GLP-test together with the Poisson model. Section

3 introduces the multinomial model, while simulated working qualities and

results of the performed simulations are described in Section 4.

2 Experimental design and statistical analy-

sis of the GLP-test

The design and the analysis of the GLP-test is described extensively in the

DIN ISO/CD 14461 (1996). For convenience, we give a short review here.

First the sample material is prepared, homogenised and diluted to a suitable

working density. The experimental design consists of four sequential dilution

series. In each series the sample material is diluted 12 times each time by

factor two. On each level in each series three plates are inoculated with the

sample material. This is performed sequentially, until the twelfth level is

reached. Then the next series is started. The number of colonies grown at

the plates after some time of incubation are counted and analysed then. See

Figure 1 for a graphical presentation of the experimental design.

If the experiment is done accurately, one would expect the average number of

colonies per millilitre to decrease by its half with every dilution step. Before

counting the grown colonies the plates should be coded and randomised to

prevent an assimilation of counting results to each other by the analyst.

Adequacy of collected data should be checked before statistical evaluation.

Following recommendations of Baumgart (1986) only those dilution steps are

suitable for evaluation for which the arithmetic mean of counts on the three

parallel plates is less than 300 for all four dilution series. Additionally, for
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Figure 1: Experimental design of the GLP-test.

an evaluable dilution step the expected average count over its twelve plates

must be at least �ve. The expectation can be estimated by calculating the

Farmiloe-estimator (Farmiloe et al., 1954), described later in this text, over

all twelve dilution steps. Usually, six evaluable dilution steps covering 72

plates can be expected to be suitable for analysis. If less than �ve dilution

levels are left for evaluation, the experiment should be repeated.

The analysis of the collected data is based on the assumption that the colony

numbers on the plates follow a Poisson distribution with a parameter � des-

cribing the average number of colony forming units in one millilitre prediluted
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sample material. In the experimental design the concentration is reduced by

its half with every dilution step. If the techniques of diluting, inoculating the

plates and counting are performed without any errors and the dilution error

is negligible, the average number of colony forming units in one millilitre of

sample material is reduced by its half with each dilution step also. Therefore,

the statistical model describes the counted number of colonies on a single

plate by a Poisson distribution with parameter 1
2i
� depending on the dilution

level:

Xijk � P 1

2i
�:

Here, Xijk denotes the counted number of colonies on the ith evaluable dilu-

tion step in the jth series of the kth parallel plate.

Statistical analysis of the observed colony counts is done in two steps. The

�rst one is based on two likelihood-ratio-tests performing a qualitative eval-

uation of the noise in the data. First the hypothesis of independence of the

parallel plates is tested against the alternative that variability of counts be-

tween parallel plates is smaller than expected in the Poisson model (\under-

dispersion"). If this hypothesis is rejected, the experiment has to be redone.

Otherwise the test of overall homogeneity of counts is carried out. If this

hypothesis cannot be rejected, the noise in the data can be described by the

Poisson model. This indicates that the laboratory counts independently. If

it is rejected, the noise is bigger than one would expect for a random error of

a Poisson- distributed variable. A large variability indicates problems with

performing the standardised method in at least one step. Therefore, as a

second step Weiss et al. suggest an analysis of variance with random e�ects

to get more information about the additional variation of the counts. This

second part �nally determines whether the analyst is able to use perform the

microbiological method in a satisfactory way.
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As described above, the �rst test, the test for internal homogeneity checks if

the colony counts of the parallel plates show less than the expected variation:

H0: In every series and on every dilution level the variability of

colony counts between parallel plates can be described with

the variance of a Poisson-distribution,

HA: variation of counts is too small.

The likelihood-ratio statistic for this hypothesis

G2
S = 2

IX
i=1

JX
j=1

KX
k=1

Xijkln
Xijk

�Xij:

follows approximately a chi-square distribution with IJ(K � 1) degrees of

freedom. Here, I denotes the number of evaluable dilution steps and �Xij:

indicates averaging over the K = 3 plates in the ith dilution step in the jth

series with J = 4. The hypothesis H0 is rejected if

G2
S < �2

IJ(K�1);0:005:

If the nullhypothesis is rejected, the variation of the colony counts of the three

parallel plates is too small for Poisson-distributed random variables. This

may be caused by insu�cient randomisation of the plates and assimilation of

counts from parallel plates to each other while counting. So independence of

the colony counts can not be assumed and the experiment has to be redone.

If the nullhypothesis is not rejected, overall homogeneity is tested by com-

paring the colony counts with the values expected under the assumptions of

the Poisson model. The expected counts of colonies �XF can be estimated by

the Farmiloe-estimator (Farmiloe et al., 1954):

�XF =

PI

i=1

PJ

j=1

PK

k=1XijkPI

i=1 JK21�i
:
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This formula relates the colony counts to the volumina of the sample material,

that plates have been inoculated with and estimates the number of colony

forming units (c.f.u.) in a volume equal to that volume of sample material

used on the �rst evaluable dilution step. The expected counts for the ith

dilution level can be estimated by

�XFi = 21�i �XF :

The test of overall homogeneity is used to decide whether the colony counts

can be described by the Poisson model:

H0: The overall variation of the colony counts can be described

by the Poisson model ,

HA: additional variation is present in the data.

The likelihood-ratio statistic for this hypothesis

G2
A = 2

IX
i=1

JX
j=1

KX
k=1

Xijkln
Xijk

�XFi

follows approximately a chi-square distribution with IJK � 1 degrees of

freedom and H0 is rejected if

G2
A > �2

IJK�1;0:99:

If the hypothesis of overall homogeneity is not rejected, it can be assumed

that no additional variation caused by an incorrect application of the labo-

ratory technique is present in the data. Therefore, the analyst performance

is acceptable and the laboratory works in a satisfactory way. The statistical

analysis can be concluded here.

If the hypothesis of overall homogeneity is rejected, statistical analysis pro-

ceeds with an analysis of variance which tries to split up the observed vari-
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ability into several components to identify possible sources of variation. The

observed data are transformed to stabilise the variance and eliminate the

e�ects of the dilution levels:

Yijk =

q
Xijk �

q
�XFi:

The analysis is based on a hierarchical model with random e�ects for the

dilution series Rj and dilution level Si(j) within the series. The variance of

the plates Pk(i(j)) comprises the random error of the data and also variation

induced by problems with counting colonies:

Yijk = �+Rj + Si(j) + Pk(i(j)):

If the data follow the Poisson model and there is no additional variance due

to dilution series, dilution steps or counting of colonies, an application of the

delta method (Ser
ing, 1980, p. 180) shows that the variance of the Yijk

is approximately 0.25. It is assumed that variation caused by dilution lev-

els within the sequential series can be explained by methodical errors when

diluting suspensions. E�ects for the series may be due to incomplete ho-

mogenisation of the material and a larger variance for the parallel plates

indicates mainly problems with counting the colonies. The analyst perfor-

mance is quali�ed as unacceptable when the estimated total variance of the

transformed data is greater than 1.

3 New Statistical Model

The Poisson model is based on the assumption that samples are taken out

parallel and that the numbers of colony forming units (c.f.u.) in the di�erent

samples are independent. This includes that an in�nite number of c.f.u.

is assumed from which any given number can be taken out. In laboratory
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practice the number of c.f.u. in the initial sample is determined by preparing

the material for the experiment. Therefore, the number of c.f.u. in each

sample depends on the number of c.f.u. in the initial sample and also on

the samples taken out before. Thus, the assumption of independent samples

seems to be critical.

The experimental design prescribes that for each dilution series an initial

sample is obtained from the prediluted material. Therefore, the colony counts

in the di�erent dilution steps of a particular series are dependent on each

other because they were all derived from the same initial sample. On the

other hand, colony counts on the plates of the same dilution step within a

series are negatively correlated. The higher the number of c.f.u. on one of

the three plates is, the fewer are left for the other two.

For the new model a �xed number n of c.f.u. in the prediluted material is

assumed, which may be considered as a realisation of a Poisson-distributed

variable Z with Z � P�V . Each germ is sampled with the same probability

which is the ratio of sample volume to the volume of the material where it is

obtained from. So the probability for taking out a speci�c number of c.f.u.

with one of the initial samples can be described by a binomial distribution.

In the GLP-experiment the four initial samples for starting the dilution series

are obtained one after the other. Employing the assumption of a �xed number

of c.f.u. in the prepared material the distribution of c.f.u. in the four initial

samples and the number of c.f.u. remaining in the sample material can be

described by conditional binomial distributions. LetN (1)
j ; j = 1 ;2; 3; 4 denote

the number of c.f.u. in the jth initial sample and n
(1)
j their realisation, then
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we assume:

N
(1)
1 � Bin(n; p

N
(1)
1
);

N
(1)
2 jN (1)= n

(1)
1 � Bin(n� n

(1)
1 ; p

N
(1)
2
);

N
(1)
3 j N

(1)
1 = n

(1)
1 ; N

(1)
2 = n

(1)
2 � Bin(n� n

(1)
1 � n

(1)
2 ; p

N
(1)
3
);

N
(1)
4 jN (1)

1 = n
(1)
1 ; N

(1)
2 = n

(1)
2 ; N

(1)
3 = n

(1)
3

� Bin(n� n
(1)
1 � n

(1)
2 � n

(1)
3 ; p

N
(1)
4
):

The probabilities p
N

(1)
j

depend on the volumes of the samples vN (5 ml for

GLP-test) and of the remaining prediluted material where the sample is

obtained from:

p
N

(1)
j

=
v
N

V � (j � 1)v
N

:

It follows that the joint distribution of these conditional binomial distri-

butions is a multinomial distribution (Schlittgen, 1996; Kotz and Johnson,

1981):

(N
(1)
1 ; N

(1)
2 ; N

(1)
3 ; N

(1)
4 ; N

(0)
Rest) �Mult(n; p

R
; p

R
; p

R
; p

R
; 1� 4p

R
)

with probabilities p
R
=

v
N

V
.

From each of the four initial samples three samples are taken to inoculate

the three parallel plates and one sample is obtained to provide material for

the second dilution step. If N
(2)
j denotes the number of c.f.u. in this sample

for the jth series and N
(1)
jRest indicates the number of c.f.u. remaining in

the jth initial sample after the four samples to be taken from it have been

obtained, then we assume that this can be described by conditional binomial

10



distributions also:

X1j1 � Bin(n
(1)
j ; px1);

X1j2 j X1j1 = x1j1 � Bin(n
(1)
j � x1j1; px2);

X1j3 j X1j1 = x1j1; X1j2 = x1j2 � Bin(n
(1)
j � x1j1 � x1j2; px3);

N
(2)
j j X1j1 = x1j1; X1j2 = x1j2; X1j3 = x1j3

� Bin(n
(1)
j � x1j1 � x1j2 � x1j3; pN );

with probabilities depending on the volume vx of the samples used for inocu-

lating the plates (1 ml for GLP) and the volume of the diluted material on

each step VStep (10 ml):

pxk =
vx

VStep � (k � 1)vx
and p

N
=

v
N

VStep � 3vx
:

The joint distribution of these counts then again is a multinomial distribu-

tion:

(X1j1; X1j2; X1j3; N
(2)
j ; N

(1)
jRest

) �Mult(n
(1)
j ; px; px; px; pS ; 1� 3px � p

S
):

with

px =
vx

VStep
and p

S
=

v
N

VStep
:

The numbers of c.f.u. in the samples of the later dilution steps can be

described in a similar way.

Combining the distributions introduced above to an overall joint distribu-

tion, the numbers of c.f.u. on the di�erent dilution steps and plates can be

described with a multinomial distribution:

(X111; : : :Xijk; : : : ; X12:4:3; XRest j Z = n)

�Mult(n; p1; : : :| {z }
12�

; p2; : : : : : : ; p12; 1�
X12

i=1
12pi):
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Here the probabilities pi are given by the quotient of initial sample volume

on the ith plate to the initial volume pi =
v

2iV
.

The following theorem establishes a link between our model and the Poisson

model of Weiss et al.. Note that this is similar to a well-known result on the

Poisson process, see e.g. Karlin and Taylor (1975, equation 2.3).

Theorem 1:

Let Z;Xi; i = 1 ; : : : ; krandom variables with
kP

i=1

Xi = Z, Z � P�V and

(X1; : : : ; Xk j Z = n) � Mult(n; p1; : : : ; pk) with
kP

i=1

pi = 1 :

Then the Xi are stochastically independent and Poisson-distributed random

variables with Xi � Ppi�V .

Proof: Applying the theorem of total probabilities yields

P (
k\
i=1

fXi = xig) =
1X
n=0

P (
k\
i=1

fXi = xig; Z = n)

=
1X
n=0

P (
k\
i=1

fXi = xig j Z = n) � P (Z = n)

Since P (
kT
i=1

fXi = xig j Z = n) = 0 for all n with n 6=
kP

i=1

xi we get

P (
k\
i=1

fXi = xig) = P (
k\
i=1

fXi = xig j Z =
kX

i=1

xi) � P (Z =
kX

i=1

xi):

The common distribution of the X1; : : : ; Xk given Z = n is multinomial with

probabilities p1; : : : ; pk, whereas Z itself is Poisson-distributed. Therefore we

obtain

P (
k\
i=1

fXi = xig) = n!
kY

i=1

pxii
xi!

(�V )n

n!
e��V :
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Thus, n =
kP

i=1

xi and
kP
i=1

pi = 1 yield

P (
k\
i=1

fXi = xig) = e�
Pk

i=1 pi�V

kY
i=1

pxii
xi!

�V
Pk

i=1 xi

=
kY

i=1

(pi�V )
xi

xi!
e�pi�V

=
kY

i=1

P (Xi = xi):

The last set of equations shows that the common distri-

bution of the Xi; i = 1 ; : : : ; kis a product of k inde-

pendently Poisson-distributed variables with parameter pi�V .

2

In the GLP-experiment the volume of the samples vN is equal to one millilitre

and therefore we get pi =
1

2iV
and pi�V = 1

2i
�. If in the multinomial model

the additional assumption is made that the number of c.f.u. in the analysed

material is a realisation of a Poisson-distributed random variable, the counts

on the plates follow the same distribution as in the Poisson model of Weiss

et al..

4 Simulations of the GLP-test under the

multinomial model

Weiss et al. (1991) have discussed the statistical aspects of the GLP-test

and suggested further evaluation of its performance by simulation studies.

These studies should re
ect errors occurring in daily laboratory work and

model di�erent levels of working quality. The generated data should serve
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to characterise the GLP-test and especially to investigate the power of the

homogeneity tests. We perform such studies for the multinomial model.

Dahms (1992, 1996) performed several simulation studies on the GLP-test.

She generated colony counts according to a simulation design which tries to

re
ect the di�erent working steps in performing the GLP-experiment. De-

pendencies of counts were modelled by using a dynamic structure of expected

counts being speci�ed during the simulation process (Dahms, 1996). Addi-

tionally, she modelled four main sources of working errors. These errors are

also used in our simulation study, but we generate counts according to the

multinomial model.

The \counting-error" re
ects any mistakes occurring while counting the

colonies on the plates. If during the process of pipetting incorrect quan-

tities of material are transferred, this may be due to any of the following

reasons:

� \Calibration errors", that are caused by inexact calibration scales on

the pipettes.

� \Reading errors", describe an incorrect �lling of the pipette by the

analyst.

� \Draining errors", that occur if the pipette is not emptied completely

and a rest of the material remains in the pipette.

These three errors are summarised as \pipetting-errors". We assume normal

distributed calibration and reading errors. If draining errors occur, actual

sampling volumes can only be too small and therefore this error is described
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by the absolute value of a normal distributed random variable:

Calibration error a � N(0; �2
a);

Reading error b � N(0; �2
b ) and

Draining error c with probability density

fc(t) =

8<
:

0 for t � 0

2'( x
�c
) 1
�c

for f > 0

with E(c) = �c and ' density of the standard normal distribution.

Pipetting errors produce deviations of the actual sample volume from the

one prescribed by the GLP-test. Since errors are assumed to be independent

their e�ects are additive. Simulated sample volumes are therefore the sum

of the prescribed GLP-volumes and volumes produced by the errors:

Simulated volume: v = GLP-volume + a+ b� c:

To model the counting error colony counts generated in our simulation study

are normally distributed random variables with expectation Xs
ijk:

Simulated counts X
z

ijk � N(Xs
ijk; �

2
count):

Here, Xs
ijk denote the simulated number of c.f.u. on the ith evaluable dilution

step in the jth series of the kth parallel plate proportional to the simulated

volume described above. They are generated according to the conditional

binomial distributions described in the section before.

In our simulation we study di�erent combinations of these errors with vari-

ous intensities, i.e. with di�erent values for �2
a; �

2
b ; �

2
c , and �2

count, re
ecting

di�erent levels of working qualities. Values for the variances are based on
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Table 1: Summary of simulated working errors (in size of standard deviation)

Working Errors Run 0 Run 1 Run 2 Run 3

Pipetting of sample

Calibration error w.r.t. target value - 0.5 % 1 % 1 %

Reading error w.r.t. calibration mark - 0.5 % 1 % 1 %

Draining error w.r.t. actual value - 0.1 % 0.2 % 0.2 %

Pipetting of diluent 
uid

Calibration error w.r.t. target value - 0.5 % 1 % 2 %

Reading error w.r.t. calibration mark - 0.5 % 1 % 2 %

Draining error w.r.t. actual value - 0.1 % 0.2 % 0.2 %

Counting error w.r.t. number of colonies - 5 % 10 % 5 %

practical experience reported by M�uller (1989). Note that the size of these

variances is critical for the ensuing simulations. Any statement on the proba-

bility of the tests to falsely rejecting \good" work or falsely accepting \poor"

work, heavily depends on these variances. First, a simulation run without

any error terms is made (Run 0). These data provide material to assess the

evaluation strategy of the GLP-test in case of ideal laboratory work. The

second constellation of errors, Run 1, is supposed to re
ect \good" labora-

tory work. The size of errors was chosen to describe small inaccuracies and

mistakes which are unavoidable even for experienced analysts. Therefore,

the GLP-test would be expected to accept these simulated data sets. In Run

2 the variance of the error terms was doubled to simulate more imprecise

laboratory work producing data sets which should be rejected by the GLP-

test. The last simulation run, Run 3, gives an impression of the in
uence

of pipetting errors compared to counting errors. The exact values for the

standard deviations used in the four simulation runs are presented in Table
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Figure 2: Simulated distribution functions of G2
A- statistics compared to �2-

distribution for 200 data sets (starting left: �2, Run 0, Run 1, Run 3, Run 2).

1.

For the simulations a germ concentration of � = 500 per millilitre and a

starting volume equal to V = 30 millilitre was assumed. Hence, the starting

number of c.f.u. was n = 15000. Since in practice the sample material

contains a �xed number of c.f.u., we decided to use a �xed number for n

in the simulation study also. So we do not employ the assumption that this

number n can be considered as a realisation of a Poisson-distributed variable.

In each run 200 data sets were generated. Except for two data sets in Run 2

with �ve evaluable dilution levels, all data sets contained six evaluable levels.

The simulated distributions of the G2
S-statistic were comparable for all four

runs. As described above, this test checks if colony counts of the parallel

plates show less than the expected variation. This is not the case for any of

the four runs and so this result was expected.

The simulated distributions of the G2
A-statistic are displayed in Figure 2. For

Run 1 and 3 containing the same counting error (5%) simulated distributions

match closely. For Run 2 with the counting error twice as big (10%) the dis-
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Figure 3: Simulated total variance (left) and variance between plates (right) for

200 data sets (starting left: Run 0, Run 1, Run 3, Run 2 and expected variance of

0.25).

tribution function is shifted to the right indicating that the G2
A-statistic tends

to much higher values. It can be seen very clearly that the in
uence of the

counting error is much greater than the e�ect of the pipetting errors. In

Run 1, describing \good" laboratory work, the test of overall homogeneity

rejected nearly 19 % of the data sets as not meeting the required standard

(see Table 2). Therefore, the G2
A-test judges too strictly for the size of er-

rors simulated here. The nominal level of signi�cance � = 1% was clearly

exceeded. On the other hand, for Run 2, which modelled \poor" laboratory

work, 11% of the data sets have not been rejected. The second part of the

statistical analysis, based on the analysis of variance model described above,

Table 2: Assessments of the simulated error constellations

Run 0 Run 1 Run 2 Run 3

G2
S : H0 is rejected: repeat the experiment 0 0.5% 0 0

G2
A : H0 is not rejected 98% 81.4% 11% 76.5%

G2
A : H0 is rejected: 2. Evaluation step 2% 18.6% 89% 23.5%

Variance > 1: conclude \poor" performance 0 0 0 0
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Table 3: Averages of the variance components

Source of variation Run 0 Run 1 Run 2 Run 3

Total variance 0.276 0.336 0.503 0.344

Between dilution series 1.6% 1.9% 2.6% 3.4%

Dilution steps 4.8% 4.3% 4.6% 4.9%

Between plates 93.7% 93.8% 92.8% 91.8%

�nally decides whether laboratory work meets the required standard. Here,

neither in Run 1 nor in Run 2 any of the data sets was rejected. The total

variance of the transformed data was clearly below the critical value 1 for

all three simulated levels of working quality (see Table 3). The GLP-test

accepts the simulated \poor" laboratory work for all generated 200 data sets

as being acceptable laboratory work. The results of this simulations reveal a

great discrepancy between the quality assessments made by the �rst and the

second part of the statistical analysis.

The aim of the �rst part, containing the tests of homogeneity, is to avoid

the time consuming analysis of variance components and to simplify the

assessment of data quality (Dahms, 1992). This is not achieved for the

working errors simulated here.

Since no data set of Run 2 is �nally rejected, the critical value of 1 may be

reduced. Table 4 shows the percentage of rejected data sets in the second

part of the analysis for di�erent critical values.

When using a critical value of 0.5 instead of 1 only 1% of the data sets in Run

1, describing \good" laboratory work, would be rejected while 47:5% of the

data sets in Run 2 would be identi�ed as \poor" laboratory work. Therefore,

this value seems to be more suitable. Since the critical value of 1 is based only

on practical experiences and does not have theoretical basis, a modi�cation

19



Table 4: Critical values for the total variance

Run 0 Run 1 Run 2

G2
A : H0 rejected: 2. Evaluation step 2% 18.6% 89%

Variance > 1: repeat the experiment 0 0 0

Variance > 0:6: repeat the experiment 0 0 17%

Variance > 0:5: repeat the experiment 0 1% 47.5%

Variance > 0:4: repeat the experiment 2% 16% 85%

of this value might be a promising attempt to improve the performance of the

test. When nearly the same decision should be made in part one and two of

the analysis, in addition to reducing the critical value to 0.5 a modi�cation

in part one might also be considered (see also Figure 4). As described in

Section 2 the test of overall homogeneity rejects H0 if G2
A is greater than

�2
IJK�1;0:99 = 101:62, assuming 6 evaluable dilution levels. The value 101.62

was chosen to distinguish between ideal and non-ideal laboratory work but

actually, we are looking for a critical value discriminating\good" from\poor"

work. For simulation results obtained by us, a critical value of 126 might be

useful (see Figure 4). With this value for Run 1, \good" laboratory work,

only 1% of the data sets is rejected and in Run 2, 58% are identi�ed as

\poor" laboratory work (Figure 4). Nevertheless these critical values are

very rough values based on relatively few simulations. If recommendation on

this decision rule is desired, more exhaustive simulations have to be made.

5 Discussion

Statistical analysis of the data collected in the GLP-test as suggested by

Weiss et al. is based on the assumption that observed colony counts are inde-

pendent Poisson-distributed random variables. Based on simulation studies
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Figure 4: Simulated distribution functions of G2
A compared to �2-distribution

with critical values 101.62 and 126 (left) and simulated total variance with critical

values 0.5 and 1 (right)(starting left: Run 0, Run 1, Run 3, Run 2).

this assumption was criticised by Dahms (1996) who claimed that it simpli-

�es reality and does not take into account certain dependencies inherent in

the structure of the data.

In this article a new model for describing the distribution of the colony counts

in the GLP- test is proposed. The model is based on the multinomial dis-

tribution. By introducing and combining conditional binomial distributions

dependencies of samples were modelled and the limited number of c.f.u. in

the analysed material was taken into account. Additionally, the multinomial

model re
ects the ratio of sample volumes to the volumes of the material

where they are obtained from. We show that if in the multinomial model the

additional assumption is made that the number of c.f.u. in the analysed ma-

terial is a realisation of a Poisson-distributed random variable, then counts

on the plates follow the same distribution as in the Poisson model of Weiss,

Niemel�a and Arndt (1991), i.e. they are independent Poisson-distributed

variables. Based on the results of her simulation studies Dahms (1996) claims

that the Poisson model does not take the dependency of c.f.u.in the GLP-

test into account appropriately. Therefore, she strongly advises against the
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further use of the evaluation scheme in its current form. The multinomial

model introduced in this paper closely re
ects the dependencies inherent in

the structure of the c.f.u.. The fact that this model is closely related to

the Poisson model and our simulation results encourage further use of the

Poisson model and the statistical evaluation scheme based on it.

The objectives of the GLP-test is to assess the quality of analyst performance.

We investigated the e�ects of common working errors explored in the simu-

lation studies of Dahms in the new context of the multinomial model. The

results of our simulations reveal a great discrepancy between the quality as-

sessments made by the �rst and the second part of the statistical analysis in

the GLP- test. The objective of the �rst step seems not to be met, namely

to simplify the analysis by avoiding the more complex second step.

In our simulations all data sets have been accepted as meeting the required

standard of analysis, even those re
ecting very \poor" working quality.

Therefore, the critical value of 1 used by the GLP-test to decide over ac-

ceptance or rejection of a data set seems to be too high. For working errors

simulated in this article a value of 0.5 appears to be more suitable. Since the

critical value of 1 is based only on practical experiences and does not have

sound theoretical basis, a modi�cation of this value should be considered.

The critical values derived by us provide a useful hint on how performance

of the GLP-test may be improved. But simulation studies with more than

200 data sets per run should be performed to validate our suggestions.

One of the key problems of the simulation studies performed by Dahms and

in this article is the assumption that variances of error terms used to model

the di�erent levels of working quality appropriately re
ect the respective level

of quality. If, for example, even experienced laboratory assistants produce

errors higher than the ones modelled in Run 1, our judgement of the GLP-test
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would have been more positive. This issue requires further investigation.
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