3,419 research outputs found

    Mode-selective quantization and multimodal effective models for spherically layered systems

    Full text link
    We propose a geometry-specific, mode-selective quantization scheme in coupled field-emitter systems which makes it easy to include material and geometrical properties, intrinsic losses as well as the positions of an arbitrary number of quantum emitters. The method is presented through the example of a spherically symmetric, non-magnetic, arbitrarily layered system. We follow it up by a framework to project the system on simpler, effective cavity QED models. Maintaining a well-defined connection to the original quantization, we derive the emerging effective quantities from the full, mode-selective model in a mathematically consistent way. We discuss the uses and limitations of these effective models

    Eclipses of the inner satellites of Jupiter observed in 2015

    Full text link
    During the 2014-2015 campaign of mutual events, we recorded ground-based photometric observations of eclipses of Amalthea (JV) and, for the first time, Thebe (JXIV) by the Galilean moons. We focused on estimating whether the positioning accuracy of the inner satellites determined with photometry is sufficient for dynamical studies. We observed two eclipses of Amalthea and one of Thebe with the 1 m telescope at Pic du Midi Observatory using an IR filter and a mask placed over the planetary image to avoid blooming features. A third observation of Amalthea was taken at Saint-Sulpice Observatory with a 60 cm telescope using a methane filter (890 nm) and a deep absorption band to decrease the contrast between the planet and the satellites. After background removal, we computed a differential aperture photometry to obtain the light flux, and followed with an astrometric reduction. We provide astrometric results with an external precision of 53 mas for the eclipse of Thebe, and 20 mas for that of Amalthea. These observation accuracies largely override standard astrometric measurements. The (O-C)s for the eclipse of Thebe are 75 mas on the X-axis and 120 mas on the Y-axis. The (O-C)s for the total eclipses of Amalthea are 95 mas and 22 mas, along the orbit, for two of the three events. Taking into account the ratio of (O-C) to precision of the astrometric results, we show a significant discrepancy with the theory established by Avdyushev and Ban'shikova in 2008, and the JPL JUP 310 ephemeris.Comment: 7 pages, 10 figures, 4 table

    Quantum Plasmonics with multi-emitters: Application to adiabatic control

    Full text link
    We construct mode-selective effective models describing the interaction of N quantum emitters (QEs) with the localised surface plasmon polaritons (LSPs) supported by a spherical metal nanoparticle (MNP) in an arbitrary geometric arrangement of the QEs. We develop a general formulation in which the field response in the presence of the nanosystem can be decomposed into orthogonal modes with the spherical symmetry as an example. We apply the model in the context of quantum information, investigating on the possibility of using the LSPs as mediators of an efficient control of population transfer between two QEs. We show that a Stimulated Raman Adiabatic Passage configuration allows such a transfer via a decoherence-free dark state when the QEs are located on the same side of the MNP and very closed to it, whereas the transfer is blocked when the emitters are positioned at the opposite sides of the MNP. We explain this blockade by the destructive superposition of all the interacting plasmonic modes

    GRB 110205A: Anatomy of a long gamma-ray burst

    Full text link
    The Swift burst GRB 110205A was a very bright burst visible in the Northern hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and a clear temporal separation of the main emitting components: prompt emission, reverse shock, and forward shock. Our observations show several remarkable features of GRB 110205A : the detection of prompt optical emission strongly correlated with the BAT light curve, with no temporal lag between the two ; the absence of correlation of the X-ray emission compared to the optical and high energy gamma-ray ones during the prompt phase ; and a large optical re-brightening after the end of the prompt phase, that we interpret as a signature of the reverse shock. Beyond the pedagogical value offered by the excellent multi-wavelength coverage of a GRB with temporally separated radiating components, we discuss several questions raised by our observations: the nature of the prompt optical emission and the spectral evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ; the origin of an X-ray flare at the beginning of the forward shock; and the modeling of the afterglow, including the reverse shock, in the framework of the classical fireball model.Comment: 21 pages, 5 figure (all in colors), accepted for publication in Ap

    Orbit determination of Transneptunian objects and Centaurs for the prediction of stellar occultations

    Full text link
    The prediction of stellar occultations by Transneptunian objects and Centaurs is a difficult challenge that requires accuracy both in the occulted star position as for the object ephemeris. Until now, the most used method of prediction involving tens of TNOs/Centaurs was to consider a constant offset for the right ascension and for the declination with respect to a reference ephemeris. This offset is determined as the difference between the most recent observations of the TNO and the reference ephemeris. This method can be successfully applied when the offset remains constant with time. This paper presents an alternative method of prediction based on a new accurate orbit determination procedure, which uses all the available positions of the TNO from the Minor Planet Center database plus sets of new astrometric positions from unpublished observations. The orbit determination is performed through a numerical integration procedure (NIMA), in which we develop a specific weighting scheme. The NIMA method was applied for 51 selected TNOs/Centaurs. For this purpose, we have performed about 2900 new observations during 2007-2014. Using NIMA, we succeed in predicting the stellar occultations of 10 TNOs and 3 Centaurs between 2013 and 2015. By comparing the NIMA and JPL ephemerides, we highlighted the variation of the offset between them with time. Giving examples, we show that the constant offset method could not accurately predict 6 out of the 13 observed positive occultations successfully predicted by NIMA. The results indicate that NIMA is capable of efficiently refine the orbits of these bodies. Finally, we show that the astrometric positions given by positive occultations can help to further refine the orbit of the TNO and consequently the future predictions. We also provide the unpublished observations of the 51 selected TNOs and their ephemeris in a usable format by the SPICE library.Comment: 12 pages, 9 figures, accepted in A&

    3D homogenised strength criterion for masonry: application to drystone retaining walls

    Get PDF
    A 3D strength criterion for masonry is constructed based on yield design theory. Yield design homogenisation provides a rigorous theoretical framework to determine the yield strength properties of a periodic medium, based on the properties of its constituent materials. First, theoretical basis of 2D homogenisation of periodic media, and more particularly its application in the framework of yield design, will be retrieved. Then, 2D principles are extended to exhibit a 3D domain of running-bond masonry. This criterion is finally used to assess the stability of a drystone retaining wall loaded by an axle load, and theoretical results are compared to experimental data. Perspectives on this work are given as a conclusion
    • …
    corecore