136 research outputs found

    Absorbing boundary conditions for the Westervelt equation

    Full text link
    The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation

    Parabolic control problems in measure spaces with sparse solutions

    Get PDF
    Optimal control problems in measure spaces lead to controls that have small support, which is desirable, e.g., in the context of optimal actuator placement. For problems governed by parabolic partial differential equations, well-posedness is guaranteed in the space of square-integrable measure-valued functions, which leads to controls with a spatial sparsity structure. A conforming approximation framework allows one to derive numerically accessible optimality conditions as well as convergence rates. In particular, although the state is discretized, the control problem can still be formulated and solved in the measure space. Numerical examples illustrate the structural features of the optimal controls.This author was supported by the Spanish Ministerio de Ciencia e Innovación under project MTM2011-2271

    Artificial and natural radionuclides in cryoconite as tracers of supraglacial dynamics: Insights from the Morteratsch glacier (Swiss Alps)

    Get PDF
    Cryoconite, a sediment found on the surface of glaciers, is known for its ability to accumulate radionuclides. New data on cryoconite from the Morteratsch glacier (Switzerland) are presented to shed light on the mechanisms that control the distribution of radioactivity in cryoconite. Among the radionuclides detected in our samples, we have identified 108mAg, an artificial species which has never been observed in terrestrial environments before. This finding supports that cryoconite has an extraordinary ability to accumulate radioactivity. Our results also show that the radioactivity of cryoconite from a single glacier is far from uniform. Both the absolute amount of radioactivity and the relative contribution of single radionuclides are highly variable in samples from the Morteratsch glacier. To investigate the processes responsible for such variability, we have explored the correlation between radionuclides, organic and inorganic carbon fractions and the morphological features of cryoconite deposits. We have found that the degree of connection between cryoconite and supraglacial hydrology is particularly important, since it strongly influences the accumulation of radionuclides in cryoconite. Cryoconite holes connected with supraglacial channels are rich in cosmogenic 7Be; in contrast, poorly connected deposits are rich in artificial fallout radionuclides and elemental carbon. The very different half-lives of 7Be and artificial radionuclides allowed us to discuss our findings in relation to the age and maturity of cryoconite deposits, highlighting the potential use of radionuclides to investigate hydrological supraglacial processes and material cycling at the surface of glaciers

    Does Non-Moral Ignorance Exculpate? Situational Awareness and Attributions of Blame and Forgiveness

    Get PDF
    In this paper, we set out to test empirically an idea that many philosophers find intuitive, namely that non-moral ignorance can exculpate. Many philosophers find it intuitive that moral agents are responsible only if they know the particular facts surrounding their action. Our results show that whether moral agents are aware of the facts surrounding their action does have an effect on people’s attributions of blame, regardless of the consequences or side effects of the agent’s actions. In general, it was more likely that a situationally aware agent will be blamed for failing to perform the obligatory action than a situationally unaware agent. We also tested attributions of forgiveness in addition to attributions of blame. In general, it was less likely that a situationally aware agent will be forgiven for failing to perform the obligatory action than a situationally unaware agent. When the agent is situationally unaware, it is more likely that the agent will be forgiven than blamed. We argue that these results provide some empirical support for the hypothesis that there is something intuitive about the idea that non-moral ignorance can exculpate

    Recent Advances in Our Understanding of the Role of Meltwater in the Greenland Ice Sheet System

    Get PDF
    Nienow, Sole and Cowton’s Greenland research has been supported by a number of UK NERC research grants (NER/O/S/2003/00620; NE/F021399/1; NE/H024964/1; NE/K015249/1; NE/K014609/1) and Slater has been supported by a NERC PhD studentshipPurpose of the review:  This review discusses the role that meltwater plays within the Greenland ice sheet system. The ice sheet’s hydrology is important because it affects mass balance through its impact on meltwater runoff processes and ice dynamics. The review considers recent advances in our understanding of the storage and routing of water through the supraglacial, englacial, and subglacial components of the system and their implications for the ice sheet Recent findings:   There have been dramatic increases in surface meltwater generation and runoff since the early 1990s, both due to increased air temperatures and decreasing surface albedo. Processes in the subglacial drainage system have similarities to valley glaciers and in a warming climate, the efficiency of meltwater routing to the ice sheet margin is likely to increase. The behaviour of the subglacial drainage system appears to limit the impact of increased surface melt on annual rates of ice motion, in sections of the ice sheet that terminate on land, while the large volumes of meltwater routed subglacially deliver significant volumes of sediment and nutrients to downstream ecosystems. Summary:  Considerable advances have been made recently in our understanding of Greenland ice sheet hydrology and its wider influences. Nevertheless, critical gaps persist both in our understanding of hydrology-dynamics coupling, notably at tidewater glaciers, and in runoff processes which ensure that projecting Greenland’s future mass balance remains challenging.Publisher PDFPeer reviewe

    GC Insights: Lessons from participatory water quality research in the upper Santa River basin, Peru

    Get PDF
    Here we share four key lessons from an inter-disciplinary project (Nuestro Rio) that gathered community perspectives on local water quality in the Santa River basin (Peru) utilising a digital technological approach where we collected data via a novel photo elicitation app, supported by a field work campaign. The lessons explored in this article provide insights into challenges and opportunities for researchers considering developing technological tools for encouraging participation and engagement in marginalised communities

    Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years

    Get PDF
    Background: The erosion of the early mortality advantage of elective endovascular aneurysm repair (EVAR) compared with open repair of abdominal aortic aneurysm remains without a satisfactory explanation. Methods: An individual-patient data meta-analysis of four multicentre randomized trials of EVAR versus open repair was conducted to a prespecified analysis plan, reporting on mortality, aneurysm-related mortality and reintervention. Results: The analysis included 2783 patients, with 14 245 person-years of follow-up (median 5·5 years). Early (0–6 months after randomization) mortality was lower in the EVAR groups (46 of 1393 versus 73 of 1390 deaths; pooled hazard ratio 0·61, 95 per cent c.i. 0·42 to 0·89; P = 0·010), primarily because 30-day operative mortality was lower in the EVAR groups (16 deaths versus 40 for open repair; pooled odds ratio 0·40, 95 per cent c.i. 0·22 to 0·74). Later (within 3 years) the survival curves converged, remaining converged to 8 years. Beyond 3 years, aneurysm-related mortality was significantly higher in the EVAR groups (19 deaths versus 3 for open repair; pooled hazard ratio 5·16, 1·49 to 17·89; P = 0·010). Patients with moderate renal dysfunction or previous coronary artery disease had no early survival advantage under EVAR. Those with peripheral artery disease had lower mortality under open repair (39 deaths versus 62 for EVAR; P = 0·022) in the period from 6 months to 4 years after randomization. Conclusion: The early survival advantage in the EVAR group, and its subsequent erosion, were confirmed. Over 5 years, patients of marginal fitness had no early survival advantage from EVAR compared with open repair. Aneurysm-related mortality and patients with low ankle : brachial pressure index contributed to the erosion of the early survival advantage for the EVAR group. Trial registration numbers: EVAR-1, ISRCTN55703451; DREAM (Dutch Randomized Endovascular Aneurysm Management), NCT00421330; ACE (Anévrysme de l'aorte abdominale, Chirurgie versus Endoprothèse), NCT00224718; OVER (Open Versus Endovascular Repair Trial for Abdominal Aortic Aneurysms), NCT00094575

    Global variability and controls on the accumulation of fallout radionuclides in cryoconite

    Get PDF
    The accumulation of fallout radionuclides (FRNs) from nuclear weapons testing and nuclear accidents has been evaluated for over half a century in natural environments; however, until recently their distribution and abundance within glaciers have been poorly understood. Following a series of individual studies of FRNs, specifically 137Cs, 241Am and 210Pb, deposited on the surface of glaciers, we now understand that cryoconite, a material commonly found in the supraglacial environment, is a highly efficient accumulator of FRNs, both artificial and natural. However, the variability of FRN activity concentrations in cryoconite across the global cryosphere has never been assessed. This study thus aims to both synthesize current knowledge on FRNs in cryoconite and assess the controls on variability of activity concentrations. We present a global database of new and previously published data based on gamma spectrometry of cryoconite and proglacial sediments, and assess the extent to which a suite of environmental and physical factors can explain spatial variability in FRN activity concentrations in cryoconite. We show that FRNs are not only found in cryoconite on glaciers within close proximity to specific sources of radioactivity, but across the global cryosphere, and at activity concentrations up to three orders of magnitude higher than those found in soils and sediments in the surrounding environment. We also show that the organic content of cryoconite exerts a strong control on accumulation of FRNs, and that activity concentrations in cryoconite are some of the highest ever described in environmental matrices outside of nuclear exclusion zones, occasionally in excess of 10,000 Bq kg−1. These findings highlight a need for significant improvements in the understanding of the fate of legacy contaminants within glaciated catchments. Future interdisciplinary research is required on the mechanisms governing their accumulation, storage, and mobility, and their potential to create time-dependent impacts on downstream water quality and ecosystem sustainability
    corecore