1,989 research outputs found

    Analytic results on the geometric entropy for free fields

    Full text link
    The trace of integer powers of the local density matrix corresponding to the vacuum state reduced to a region V can be formally expressed in terms of a functional integral on a manifold with conical singularities. Recently, some progress has been made in explicitly evaluating this type of integrals for free fields. However, finding the associated geometric entropy remained in general a difficult task involving an analytic continuation in the conical angle. In this paper, we obtain this analytic continuation explicitly exploiting a relation between the functional integral formulas and the Chung-Peschel expressions for the density matrix in terms of correlators. The result is that the entropy is given in terms of a functional integral in flat Euclidean space with a cut on V where a specific boundary condition is imposed. As an example we get the exact entanglement entropies for massive scalar and Dirac free fields in 1+1 dimensions in terms of the solutions of a non linear differential equation of the Painleve V type.Comment: 7 pages, minor change

    Positivity, entanglement entropy, and minimal surfaces

    Full text link
    The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n1n\rightarrow 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n1n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of Wilson loops. Conclusions regarding entanglement entropy unchange

    Bose-Fermi duality and entanglement entropies

    Full text link
    Entanglement (Renyi) entropies of spatial regions are a useful tool for characterizing the ground states of quantum field theories. In this paper we investigate the extent to which these are universal quantities for a given theory, and to which they distinguish different theories, by comparing the entanglement spectra of the massless Dirac fermion and the compact free boson in two dimensions. We show that the calculation of Renyi entropies via the replica trick for any orbifold theory includes a sum over orbifold twists on all cycles. In a modular-invariant theory of fermions, this amounts to a sum over spin structures. The result is that the Renyi entropies respect the standard Bose-Fermi duality. Next, we investigate the entanglement spectrum for the Dirac fermion without a sum over spin structures, and for the compact boson at the self-dual radius. These are not equivalent theories; nonetheless, we find that (1) their second Renyi entropies agree for any number of intervals, (2) their full entanglement spectra agree for two intervals, and (3) the spectrum generically disagrees otherwise. These results follow from the equality of the partition functions of the two theories on any Riemann surface with imaginary period matrix. We also exhibit a map between the operators of the theories that preserves scaling dimensions (but not spins), as well as OPEs and correlators of operators placed on the real line. All of these coincidences can be traced to the fact that the momentum lattice for the bosonized fermion is related to that of the self-dual boson by a 45 degree rotation that mixes left- and right-movers.Comment: 40 pages; v3: improvements to presentation, new section discussing entanglement negativit

    Area laws in quantum systems: mutual information and correlations

    Get PDF
    The holographic principle states that on a fundamental level the information content of a region should depend on its surface area rather than on its volume. This counterintuitive idea which has its roots in the nonextensive nature of black-hole entropy serves as a guiding principle in the search for the fundamental laws of Planck-scale physics. In this paper we show that a similar phenomenon emerges from the established laws of classical and quantum physics: the information contained in part of a system in thermal equilibrium obeys an area law. While the maximal information per unit area depends classically only on the number of microscopic degrees of freedom, it may diverge as the inverse temperature in quantum systems. A rigorous relation between area laws and correlations is established and their explicit behavior is revealed for a large class of quantum many-body states beyond equilibrium systems.Comment: 5 pages, 2 figures, published version with appendi

    Area law and vacuum reordering in harmonic networks

    Full text link
    We review a number of ideas related to area law scaling of the geometric entropy from the point of view of condensed matter, quantum field theory and quantum information. An explicit computation in arbitrary dimensions of the geometric entropy of the ground state of a discretized scalar free field theory shows the expected area law result. In this case, area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations. Furthermore, the explicit control on all the eigenvalues of the reduced density matrix allows for a verification of entropy loss along the renormalization group trajectory driven by the mass term. A further result of our computation shows that single-copy entanglement also obeys area law scaling, majorization relations and decreases along renormalization group flows.Comment: 15 pages, 6 figures; typos correcte

    Entanglement entropy of two disjoint intervals in c=1 theories

    Full text link
    We study the scaling of the Renyi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c=1. We provide the analytic conformal field theory result for the second order Renyi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor network techniques that allowed to obtain the reduced density matrices of disjoint blocks of the spin-chain and to check the correctness of the predictions for Renyi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure

    Hyperspherical entanglement entropy

    Full text link
    The coefficient of the log term in the entanglement entropy associated with hyperspherical surfaces in flat space-time is shown to equal the conformal anomaly by conformally transforming Euclideanised space--time to a sphere and using already existing formulae for the relevant heat--kernel coefficients after cyclic factoring. The analytical reason for the result is that the conformal anomaly on the lune has an extremum at the ordinary sphere limit. A proof is given. Agreement with a recent evaluation of the coefficient is found.Comment: 7 pages. Final revision. Historical comments amended. Minor remarks adde

    Angular momentum sharing in dissipative collisions

    Full text link
    Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of 93^{93}Nb and 116^{116}Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.Comment: 8 pages, 2 figure

    Status and performances of the FAZIA project

    Get PDF
    FAZIA is designed for detailed studies of the isospin degree of freedom, extending to the limits the isotopic identification of charged products from nuclear collisions when using silicon detectors and CsI(Tl) scintillators. We show that the FAZIA telescopes give isotopic identification up to Z\sim25 with a Δ\DeltaE-E technique. Digital Pulse Shape Analysis makes possible elemental identification up to Z=55 and isotopic identification for Z=1-10 when using the response of a single silicon detector. The project is now in the phase of building a demonstrator comprising about 200 telescopes
    corecore