View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

arXiv:0704.3906v2 [quant-ph] 10 Mar 2008

provided by Ghent University Academic Bibliography

Arealawsin quantum systems: mutual information and correlations

Michael M. Wolf', Frank Verstraete Matthew B. Hasting’ J. Ignacio Cirat
1 Max-Planck-Institut fir Quantenoptik, Hans-Kopferma®im1, 85748 Garching, Germany.
2 Fakultat fur Physik, Universitat Wien, BoltzmanngaSseA-1090 Wien, Austria.
3 Center for Non-linear Studies and Theoretical Division,
Los Alamos National Laboratory, Los Alamos, New Mexico 8734SA
(Dated: March 10, 2008)

The holographic principle states that on a fundamental teeenformation content of a region should depend
on its surface area rather than on its volume. In this papeshe@ that this phenomenon not only emerges in the
search for new Planck-scale laws but also in lattice modet$agsical and quantum physics: the information
contained in part of a system in thermal equilibrium obeyam@a law. While the maximal information per unit
area depends classically only on the number of degreesexfdra, it may diverge as the inverse temperature in
guantum systems. It is shown that an area law is generallijgchpy a finite correlation length when measured
in terms of the mutual information.
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A lot of knowledge has been acquired in Condensed Matter coobBecococococcodhoce
Physics in this direction and is now being used and developed coofeooe ceoopoleoee
further in the study of entanglement in Quantum Information ©ceoglpeooe ©eeoeodoeoooe
Theory [1,[2] B]. The second approach (see[TFig.1) asks how 2 ﬁ g i z z g z E g 2 z | 2 z 2 ﬁ
correlat!ons between a conne.cted region anq its envirohmen co @ o oeececoolde o e o
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perature@ﬂd]d]ﬂ@ 9.h 13] where all corretegio c0e00eoce o M. ccecooe

are due to entanglement which in turn is then measured by the
entropy. FIG. 1: We are interested in the mutual information (or eglten

PR : : . ment) between the two regions and B. Heuristically, if there is a
The erglnal interestin this tOplmm 15] c_ame from correlation lengtlg then sites inA and B that are separated by more
the insight that the entropy of blf%k holes scales with teaar than¢ (the shaded stripe) should not contribute to the infornmatio
of the surfaces at the event horizon—we say that an area laghtanglement betweet and B. The mutual information (or entan-
holds, in this case with a maximal information content of oneglement) is thus bounded by the number of sites at the boyndar
bit per Planck area. Remarkably, a similar entropy scakng i

observed in non-critical quantum lattice systems whilé-cri
cal systems are known to allow for small (logarithmic) devi- system about another without 'overlooking’ hidden correla
ations [6,7/B[ 1ol 3d, 11]. Both is in sharp contrast to thetions: (iii) the area law can be rigourously proven at anytdini
behavior of the majority of states in Hilbert space which ex-temperature; (iv) the heuristic picture relating decay of-c
hibit a volume scaling rather than an area law. These insightrelations and area law can be made rigorous in the form of a
fruitfully guided recent constructions of powerful class&  one-way implication. Moreover, we will prove that an area
ansatz states which are tailored to cover the relevant &speqaw is fulfilled by all mixed projected entangled pair states
of strongly correlated quantum many-body systéms/[16, 17].(PEPS), discuss the behavior of the mutual information for
A heuristic explanation of the area law in non-critical sys-certain classes of 1D systems in more detail, and show that a
tems comes from the existence of a characteristic length,sca strict 1D-area law implies that the state has an exact repres
the correlation length, on which two-point correlationsale  tation as a finitely correlated state.
(Fig[D). Intuitively this apparent localization of coragibns We begin by fixing some notation. We consider systems
should imply an area law, an argument which can, howevegn latticesA C Z?” in D spatial dimensions which are suf-
not easily be made rigorous A firm connection between thdiciently homogeneous (e.g., translational invariant).ctEa
decay of correlations and the area law is thus still lackisg asite of the lattice corresponds to a classical or quantum spi
well as is a proof and extension of the latter beyond zero temwith configuration spacg, or Hilbert spaceC? respectively.
perature. In the present work we address both problems b§iven a probability distributiop on A and marginalg 4, p5
resorting to a concept of Quantum Information Theory—thecorresponding to disjoint sets, B C A, the mutual informa-
mutual information. The motivation for this quantity is tha tion between these regions is defined by
(i) it coincides with the entanglement entropy at zero tempe
ature; (ii) it measures the total amount of information oéon I(A:B)=H(pa)+ H(pp) — H(paB), 1)
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whereH (p) = — )" p(x)logp(x) is the Shannon entropy. temperature3. In fact, it is known that at zero temperature
In the quantum case the&s become density operators (and the boundary area scaling of the mutual information, which
their partial traces) anff has to be replaced by the von Neu- then becomeg(A : B) = 25(A), breaks down for certain
mann entropyS(p) = —tr[plog p]. The mutual information critical systems] [6,/7./8) 9, 1.0, 111]. EG.(3) shows that al th
has a well defined operational meaning as the total amount dégarithmic corrections appearing in these models disappe
correlations between two systen@[lQ]. It quantifies the in-at any finite temperature.

formation aboutB which can be obtained from and vice By comparing the area laws (2) aid (3) we notice that quan-
versa. Elementary properties of the mutual information aréum states may have higher mutual information than claksica
positivity, that it vanishes iff the system factorizes, anisé ~ ones as the information per unit area is no longer bounded by
non-increasing under discarding parts of the sys@n [2@]. Wthe number of degrees of freedom. In fact, our results imply
will occasionally writeS 4 meaningS(pa). that if a system violates inequality](2), then it must have a
guantum character. Note that Eg¥.12,3) directly genertie
findings of ] for systems of harmonic oscillators.

Let us now turn to an important class of quantum states
which goes beyond Gibbs states, namely projected entangled
pair states (PEPSHIlG]. These states bear their name from
projecting ‘virtual spins’, obtained from assigning ergéad
pairs|®) = Zil |i7) to the edges of a lattice, onto physical
sites corresponding to the vertices. A natural generaizat
of this concept to mixed states is to use completely positive
maps for the mapping from the virtual to the physical level
[]E]. Since every such map can be purified, these mixed PEPS
can be interpreted as pure PEPS with an additional physical
system which gets traced out in the end. For all these states
I(A:B)=1(0A:0B) < H(0A) < |0A|logd, (2) onecannow easily see that the mutual information between a

block A and its complemenB satisfies a boundary area law

Area laws for classical and quantum systerhst us start
considering classical Gibbs distributions of finite range i
teractions. All such distributions are Markov fields, i.g.,
x4, 20, xp are configurations of three regions whéresep-
aratesA from B such that no interaction directly conneets
with B, thenp(zalzc,25) = p(zalzc) holds for all con-
ditional probabilities [withp(z|y) := p(x,y)/p(y)]. Let us
denote byoA, 0B the sets of sites im, B which are con-
nected to the exterior by an interaction. Exploiting the kéar
property together with the fact that we can express the mu
tual information in terms of a conditional entropi{( A|B) =
H(A) — I(A : B) then leads to an area law

where the first inequality follows from positivity of the slsi-
cal conditional information. Equatiohl(2) shows that ctare I(A: B) <2|0A[log D, 4)

tions in classical thermal states are localized at the bagynd . . . . .
since it is upper bounded by the mutual information, i.e.,

In particular if we take’s the complement ofl, then we ob- eté{vice the block entropy, of the purified state which is in turn

tain that the mutual information scales as the boundary ar & ded by th ber of bond © Anint " | ¢
of the considered region and the maximal information petr uni ounded by the humber o bonds cut. An Interesting class o
ixed PEPS are Gibbs states of Hamiltonians of commuting

area is determined by the number of microscopic degrees (%F : : . :
freedom. Inite range interactions (see appendix). Note that these ar

For qguantum systems less information can be inferred frorﬂ:ﬂOt .necessanly classical systems, as a smultaneo_usrdiago
ation need not preserve the local structure of the intenac

the boundary and the Markov property does no longer hold . X
in general. Remarkably enough, for the case of the mutue Kitaev model@Z] on the square lattice, the clustelestat

information between a regiod and its complemenB we ] Hamiltonian ar_ld all stabilizer Hgmiltonians fall _ini$h
can also derive an area law for finite temperatures. In orde?lass' Mor(_aover, Gibbs states of arbltr.ary local Hamitosi
to show that, we consider again a finite range Hamiltoniarf® approximately representable as mixed PEPS [24].

H = Hs+Hy+ Hp,whereH 4, Hp are all interaction terms Mutual information and correlations: We will now dis-

within the two regions andi collects all those crossing the cuss the correlations measured in terms of the mutual irderm
boundary. The thermal statg g corresponding to the inverse tion between separate regions. Traditionally, correfetiare

temperatured minimizes the free energy'(p) = tr[Hp] —  measured by connected correlation functi6(d/4, Mpg) :=

%S(p). In particular,F'(pag) < F(pa® pp) fromwhichwe (M4 ® Mg) — (M4)(Mp) of observabled/ 4, Mp. In fact,

obtain these two concepts can be related by expressing the mutual in

formation as a relative entro@(pag|pa @ ps) = I(A : B),

I(A: B) < Btr[Ho(pa ® pp — pan)] (3) using the norm bound (p|o) > 1||p — o||? [25] and the in-

sinceH 4, Hp have the same expectation values in both case§qu"jll|ty||X||1 > tr[XY]/[[Y[]. In this way we obtain

As the r.h.s. of Eq{3) depends solely on the boundary we C(Ma, Mp)?

obtain again an area law scaling similar to that in Bq.(2). I(A:B) > (5)

. ) o . : = 2| Mall?||MB|)%
For example, if we just have two-site interactions we obtain (1Ml 1Ml

I(A : B) < 23]|h|||0A|, where]|h||| is the maximal eigen- Hence, ifI(A : B) decays for instance exponentially in the
value of all two—site Hamiltonians across the boundary, i.e distance betweerd and B then so willC. One of the advan-
the strength of the interaction. Note that the scale at wiieh tages of the mutual information is, that there cannot be cor-
area law becomes apparent is now determined by the inverselations ‘overlooked’, wherea$ might be arbitrarily small
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FIG. 2: Left: We consider regiond and B separated by a spherical
shell of thicknesd. < R; Right: Simple 1D model for a state which
is formed by singlet pairs (indicated by lines joining thewf)ose
length follows a given probability distribution.

while the state is still highly correlated—a fact exploited
guantum data hiding and quantum expan@s[%].
In the following we will relate the correlation length as de-

fined by the mutual information with the area law mentioned

previously. To this end consider a spherical slieibf outer
radiusR and thicknesd, < R which separates the inner re-
gion A from the exteriorB (see Fig[R). We denote the mutual
information betweem andB by I, (R) and define,, as the
minimal lengthZ such thatl;,(R) < Iy(R)/2forall R, i.e., a
correlation length measured by the mutual information.eNot
that&,, can be infinite (e.g., for critical systems) and that it
takes into account the decay of all possible correlatiors. U
ing the subadditivity property of the entropy we obtain the
general inequalityl (A : BC) < I(A : B) + 2S¢ which
leads to

Iy < Ie,, + 2S¢ < 4|0A|énr. (6)

3

'H1, H2 Hilbert spaces of dimensiab, d respectively. Define
further £(z) = tro[T(x)] and assume the generic condition
that £ has only one eigenvalue of magnitude one. The sec-
ond largest eigenvalue), is related to the standard correla-
tion length throught ~ —1/1In7. In order to estimaté,,

we exploit the fact thap , g factorizes exponentially with in-
creasing separatiah, i.e.,||pap — pa @ ppll1 = O(e L/¢)
(see appendix). Moreover, can be locally purified thereby
increasing the size dfl; by a factor ofd D2. Denoting the ad-
ditional purifying systems byl’ and B’ respectively, we ob-
tain onthe one hanf(A : B) < I(AA’ : BB') = S(paa ®
pBB’)—S(paasp’). Onthe other hand we can apply Fannes’
inequality[29],|S(p) — S(0)| < Alog(d—1)+H(A,1-A),
whereA = 1||p — o||; andé is the dimension of the support-
ing Hilbert space, td(AA’ : BB’). Due to the purification
we deal with finite dimensional systemé & D?) so that
putting things together leads to

IL(R) < 1og(D)0(L e—L/f). @)

Sincel;(R) increases (decreases) with(L), and is lower
bounded by correlation functiofl(5) this inequality immedi
ately implies that, is finite and directly related te.

The case considered above includes several interesting
situations of systems in 1D with finite—range interactions:
frustration—free Hamiltonians & = 0, all classical Gibbs
states, and all quantum ones for commuting Hamiltonians. In
all cases, the area law is fulfilled following the resultsegiv
in the previous sections. However, it is known that for darta
critical local Hamiltonians the area law is violated7at= 0.

In order to analyze how this behavior may emerge, we will
considered a simple toy model in 1D for whi€h(R) can be
exactly determined.

Let us consider a spi;}l system formed of singlets (see Fig.

Here the first inequality implies the second one by insertings) The state is such that from any given sitehe probability

I¢,, < Iy and the fact thaf(C) < &y |0A| . So, indeed,

of having a singlet with another sitg, is a functionf (|i — j1).

we getan area law for the mutual information solely from theThe mutual information between two regions is equal to the
existence of the length scalg;, which expresses the common pymper of singlets that connect those regions, and thusiit ca
sense explanation of Fig.l] 1. This area law is also valid fofye easily determined (if we take a large region, so that we
zero temperature and when violated immediately implies apgp, average this number). If we takér) x e—%/¢ we have
infinit(_a correlation IengFP{M. T_he converse is,_however, not that: (i) all (averaged) correlation functions decay exgron
true since there are critical lattice systems which obeyrea a tia|ly with the distance and thatgives the correlation length;
law ,_]. Surpr!smgly, an area law can even hold underjjy I (R) decays exponentially with and that¢,; ~ &; (i)
algebraically decaying two-point correlations|[21] 27]. an area law is fulfilled. If we takg () o 1/(z2 + a2) we

Examples in one dimensionWe will now investigate the obtain that: (i) the correlation functions decay as powersla
decay of correlations in terms of the mutual information forwith the distance; (i)[.(R) ~ log(2R — L) and thus{y,
certain simple cases. We will show that in all of them is IS infinite; (iii) the area law is violated. Thus, for this spe
directly connected to the standard correlation length. We w cific model we see how the violation of the area law naturally
consider infinite lattices in 1 spatial dimension (see Ejg. 2  implies an infinite correlation length.

We start out by considering an important class of states, For zero temperature there is another simple connection be-
the so—called finitely correlated states (FC@ [28], whiah n  tween the area law and the decaylef{ R) as a function of
urally appear in several lattice systems in 1D. They can beéhe separatiorl. If for a pure state the entropy of a block
viewed as 1D PEPS (or matrix product states). Every FCS isf length L goes to a constaril’ asS;, = K — f(L) with
most easily characterized by a completely positive, traee p f(L) — 0 for increasingL, thenI,(R) — f(L) asR — oo
serving map (a channel) : B(H,) — B(H, ® H2) with  for sufficiently largeL. If the block entropy diverges instead,



thenl, (R) — oo for every finite separation. PEPS representation of thermal stabilizer states

Saturation of mutual information implies FC&or one- |l_lb . o -
dimensional systems the area law just means a saturation of PEPSILIB] bear their name from projecting ‘virtual spins’,

the mutual information. Let us finally gain some first insight °°tained from assigning entangled paits = il it) t0
into the structure of states having this property. So carsid the _edges of a lattice, onto p_hys_lcal 5|tes_ correspondln@a_o

a general (mixed) 1D translational invariant state and tieno vertices. A natural generallza.lt}on of this concept to mixed
the mutual information between a block of lendgitand the states is to use completely positive maps for the mapping fro

rest of the system by(L) and similarly its entropy bys().  the Virtual to the physical level [18]. Since every such map
The latter can be shown to be a concave function can be purified, these mixed PEPS can be interpreted as pure

PEPS with an additional physical system which gets traced
out in the end. To become more specific let us consider a
2D square lattice. Then every pure PEPS is characterized by
assigning a 5'th order tense¥.; , , to each lattice site. Here
the upper index corresponds to the physical site and therlowe
‘virtual’ ones (running from 1 taD) get contracted according
to the lattice structure. A mixed PEPS is then obtained by
increasing the range ofromd to dd g and finally tracing over
these additional environmental degrees of freedom, wtach ¢
I(L)=I(L—=1) = [S(L) = S(L—-1)] ©)  pe thought of as a second layer of the square lattice.
—[S(N—-L+1)—S(N - L) Let us now prove that all Gibbs states of Hamiltonians of
commuting finite range interactions are mixed PEPS. For sim-
is a difference between two slopes of the entropy functionplicity consider again a 2D square lattice. Starting pasrbi
Due to concavity ofS(L), I(L) is increasing as long as write the un-normalized Gibbs state @s’//21e=##/2 and
L < N/2. Moreover, if from some length scale on the mutualto interpret thel as a partial trace over maximally entangled
information exactly saturates, i.d(L — 1) = I(L) then all  stateg§® ® ®) to whiche=?H/2 is applied. In order to get an
slopes betwee and N — L have to be equal so that strong explicit form for the tensod assume that horizontally neigh-
subadditivity in Eq[(B) holds with equality. States withisth boring sites interact via;, and vertical neighbors via, and
property are, however, nicely characterized [30] and knowrdenote by
to be quantum Markov chains. That is, there exists a channel

S(L) > (S(L—1)+S(L+1))/2, (8)

which is nothing but the strong subadditivity inequality- ap
plied to a region of length. — 1 surrounded by two single
sites. Eq[(B) has strong implications on the behaviaf(af).
Assume that the system is a finite ring of lengfhthen

~ _ —Bhy/2 _ —nhn/2 _
T B(HEC ) - B(HE) such that e M= Ua® Doy, e ™P=3 Ry Ls (11)
o B
(id® T)(pr-1) = pr, (10)  Schmidtdecompositionsin the Hilbert-Schmidt Hilbertspa

That is, the operator&,, D, Rg, Lg form four sets of or-

wherep;, is the reduced density operator bfsites and suc- thogonal operators, which by assumption commute with each

cessive applications df to the lastl,— 1 sites generates larger ©Other but not necessarily among themselves (gig, Uz| #

and larger parts of the chain. For infinite systems thesesstat 0)- Using that the Gibbs state is up to normalization a product

form a subset of the FCS where ndw = d(L~ 1, j.e., the of terms as in EJ.(11) leads then to its PEPS representation

scale at which saturation sets in determines the ancillary dwith D = d* and

mension needed to represent the state. ALy a= [LrRlUdDu] L (12)
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We consider now so called finitely correlated states (FCS)
[@], which naturally appear in several lattice systemsin 1
They can be viewed as 1D PEPS (or matrix product states)
where all the local projectors are the same. Every FCS is most

In this appendix we show that (i) every Gibbs state of aeasily characterized by a completely positive, trace prasg
local quantum Hamiltonian with mutually commuting inter- map (a channel)” : B(H,) — B(H, ® H2) with H;, Ho
actions is a mixed projected entangled pair state (PEP&) witHilbert spaces of dimensiah, d respectively. Define further
small bond dimension, and (ii) finitely correlated states fa £(x) = tra2[T(z)] and assume the generic condition tiat
torize exponentially, i.e., exhibit an exponential sptibperty.  has only one eigenvalue of magnitude one, corresponding to a
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