116 research outputs found

    Simulations of the 2004 North American Monsoon: NAMAP2

    Get PDF
    The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.open131

    A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene

    Full text link
    Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many approaches have been tried, such as, physical and chemical functionalizations. These processes compromise some of the desirable graphene properties. In this work, based on ab initio quantum molecular dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene carbon (BPC) can be obtained from selective dehydrogenation of porous graphene. BPC presents a nonzero bandgap and well-delocalized frontier orbitals. Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281

    Fractional snow cover in the Colorado and Rio Grande basins, 1995-2002

    Full text link
    A cloud-masked fractional snow-covered area (SCA) product gridded at 1 km was developed from the advanced very high resolution radiometer for the Colorado River and upper Rio Grande basins for 1995-2002. Cloud cover limited SCA retrievals on any given 1-km2 pixel to on average once per week. There were sufficient cloud-free scenes to map SCA over at least part of the basins up to 21 days per month, with 3 months having only two scenes sufficiently cloud free to process. In the upper Colorado and upper Grande, SCA peaked in February-March. Maxima were 1-2 months earlier in the lower Colorado. Averaged over a month, as much as 32% of the upper Colorado and 5.5% of the lower Colorado were snow covered. Snow cover persisted longest at higher elevations for both wet and dry years. Interannual variability in snow cover persistence reflected wet-dry year differences. Compared with an operational (binary) SCA product produced by the National Operational Hydrologic Remote Sensing Center, the current products classify a lower fraction of pixels as having detectable snow and being cloud covered (5.5% for SCA and 6% for cloud), with greatest differences in January and June in complex, forested terrain. This satellite-derived subpixel determination of snow cover provides the potential for enhanced hydrologic forecast abilities in areas of complex, snow-dominated terrain. As an example, we merged the SCA product with interpolated ground-based snow water equivalent (SWE) to develop a SWE time series. This interpolated, masked SWE peaked in April, after SCA peaked and after some of the lower-elevation snow cover had melted. Copyright 2008 by the American Geophysical Union

    Thienoisoindigo-Based Semiconductor Nanowires Assembled with 2-Bromobenzaldehyde via Both Halogen and Chalcogen Bonding

    Get PDF
    We fabricated nanowires of a conjugated oligomer and applied them to organic field-effect transistors (OFETs). The supramolecular assemblies of a thienoisoindigo-based small molecular organic semiconductor (TIIG-Bz) were prepared by co-precipitation with 2-bromobenzaldehyde (2-BBA) via a combination of halogen bonding (XB) between the bromide in 2-BBA and electron-donor groups in TIIG-Bz, and chalcogen bonding (CB) between the aldehyde in 2-BBA and sulfur in TIIG-Bz. It was found that 2-BBA could be incorporated into the conjugated planes of TIIG-Bz via XB and CB pairs, thereby increasing the pi - pi stacking area between the conjugated planes. As a result, the driving force for one-dimensional growth of the supramolecular assemblies via pi - pi stacking was significantly enhanced. TIIG-Bz/2-BBA nanowires were used to fabricate OFETs, showing significantly enhanced charge transfer mobility compared to OFETs based on pure TIIG-Bz thin films and nanowires, which demonstrates the benefit of nanowire fabrication using 2-BB

    Gemcitabine with or without continuous infusion 5-FU in advanced pancreatic cancer: a randomised phase II trial of the Italian oncology group for clinical research (GOIRC)

    Get PDF
    This study was performed to determine the activity of adding continuous infusion (CI) of 5-fluorouracil (5-FU) to gemcitabine (GEM) vs GEM alone in advanced pancreatic cancer (APC). In all, 94 chemo-naïve patients with APC were randomised to receive GEM alone (arm A: 1000 mg m−2 per week for 7 weeks followed by a 2 week rest period, then weekly for 3 consecutive weeks out of every 4 weeks) or in combination with CI 5-FU (arm B: CI 5-FU 200 mg m−2 day−1 for 6 weeks followed by a 2 week rest period, then for 3 weeks every 4 weeks). Overall response rate (RR) was the primary end point and criteria for decision were planned according to the Simon's optimal two-stage design. The overall RR was 8% (arm A) and 11% (arm B) (95% confidence interval: 0.5–16% and 2–22%), respectively, and stable disease was 29 and 28%. The median duration of RR was 34 weeks (range 25–101 weeks) for GEM and 26 weeks (range 16–46 weeks) for the combination. The median progression-free survival (PFS) was 14 weeks (range 2–65 weeks) and 18 weeks (range 4–51 weeks), respectively. The median overall survival (OS) was 31 weeks (range 1–101 weeks) and 30 weeks (1–101 weeks). Toxicity was mild in both arms. This study does not show promising activity in terms of RR, PFS and OS for the double combination arm in APC

    Manipulating the Conformation of Single Organometallic Chains on Au(111)

    Get PDF
    The conformations of organometallic polymers formed via the bottom-up assembly of monomer units on a metal surface are investigated, and the relationship between the adsorption geometry of the individual monomer units, the conformational structure of the chain, and the overall shape of the polymer is explored. Iodine-functionalized monomer units deposited on a Au(111) substrate are found to form linear chain structures in which each monomer is linked to its neighbors via a Au adatom. Lateral manipulation of the linear chains using a scanning tunneling microscope allows the structure of the chain to be converted from a linear to a curved geometry, and it is shown that a transformation of the overall shape of the chain is coupled to a conformational rearrangement of the chain structure as well as a change in the adsorption geometry of the monomer units within the chain. The observed conformational structure of the curved chain is well-ordered and distinct from that of the linear chains. The structures of both the linear and curved chains are investigated by a combination of scanning tunneling microscopy measurements and theoretical calculations
    corecore