38 research outputs found
A review of the ecological and socioeconomic characteristics of trophy hunting across Asia
The continuing debates about trophy hunting should be underpinned by an understanding of at least the basic characteristics of the practice (e.g. species, quotas, areas, prices). Whilst many countries in Asia have established trophy hunting programmes of considerable importance to conservation and local livelihoods, there remains some ambiguity over the extent of trophy hunting in Asia as its basic characteristics in each country have not been compiled. In this study, we compile information on various ecological and socioeconomic characteristics of trophy hunting of mammals for countries across Asia by reviewing published and unpublished literature, analysing trade data, and obtaining contributions from in-country contacts. Across Asia, established trophy hunting programmes exist in at least 11 countries and target at least 30 species and one hybrid (incl., five Vulnerable and one Endangered species). Trophy hunting in these countries varies markedly in areas (e.g. >1 million km2 in Kazakhstan, 37% of country, vs. 1325 km2 in Nepal, <1% of country) and annual offtakes (e.g. Kazakhstan: 4500 individuals from 4 of 5 trophy species; Pakistan: 229 from 4 of 7; Mongolia: 155 from 6 of 9; Tajikistan: 126 from 3 of 6; Nepal: 22 from 3 of the 4 that are trophy hunted in practice). Permit prices also vary across species and countries, with domestic and international hunters sometimes charged different rates. Hunters from the USA appear overwhelmingly prominent among international clients. National legislations typically mandate a proportion of trophy hunting revenue to accrue locally (range: 40â100%). We provide five key recommendations for research to inform trophy hunting policy in Asia: (1) Ecological impact assessments; (2) Socioeconomic impact assessments; (3) Evaluations of the contributions of trophy hunting to conservation spending; (4) Evaluations of the contributions of trophy hunting to the post-2020 Global Biodiversity Framework; (5) Further examinations of perceptions of trophy hunting
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio
Moving in the anthropocene: global reductions in terrestrial mammalian movements
Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission
Body size and digestive system shape resource selection by ungulates : a cross-taxa test of the forage maturation hypothesis
The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.DATA AVAILABILITY STATEMENT : The dataset used in our analyses is available via Dryad repository (https://doi.org/10.5061/dryad.jsxksn09f) following a year-long embargo from publication of the manuscript. The coordinates associated with mountain zebra data are not provided in an effort to protect critically endangered black rhino (Diceros bicornis) locations. Interested researchers can contact the data owner (Minnesota Zoo) directly for inquiries.https://wileyonlinelibrary.com/journal/elehj2022Mammal Research InstituteZoology and Entomolog
Behavioral responses of terrestrial mammals to COVID-19 lockdowns
DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animalsâ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program âAdvanced Instrumentation for Wildlife Protectionâ, Fondation SegrĂ©, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier dâAuvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governorâs Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Ăzkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, vĂŠrdier og vĂŠrktĂžjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanyâs Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de DouĂ©-la-Fontaine, Zoo Dresden, Zoo Idaho, KolmĂ„rden Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y TecnologĂa (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Unionâs Horizon 2020 research and innovation program under the Marie SkĆodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the âInvestissements dâavenirâ program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMĂ©RA/Aix-Marseille UniversitĂ©, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germanyâs Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog
Changes in grouping patterns of saiga antelope in relation to intrinsic and environmental factors in Mongolia
Factors that affect group sizes in large ungulates are generally poorly understood for species from remote regions. Understanding grouping patterns is important for effective species management, but is lacking for the endangered Mongolian saiga (Saiga tatarica mongolica).We studied seasonal changes in the group size and social structure of saigas in relation to environmental and anthropogenic factors in western Mongolia during 2009â2012. To identify group size and composition, we observed saigas monthly while conducting monitoring surveys, and weekly while tracking radio-collared animals. We observed 9268 individuals; median group size was 6.5 (SE = 1.7; range = 1â121), and groups of 1â5 animals were most common. Seasonality exerted strong effects with the smallest groups in June and largest in December. The largest mixed and nursery groups formed during pre-rutting and summer seasons, respectively, but no seasonal differences were detected for bachelor groups. The best fitting model, including Normalized Difference Vegetation Index, predation rate and season as covariates, explained ~76% of the variation in monthly âtypicalâ group size. Our results are concordant with studies of other arid-adapted ungulates and suggest vegetation productivity, predation rate and biological cycles are responsible for saiga grouping patterns in Mongolia
Mongolian Saiga in Sharga Nature Reserve: Are Domestic Dogs Threat to Saiga?
Dogs (
Canis familiaris
) are recognized as one of the most numerous carnivores in the world. They
have direct and indirect impacts on a diverse range of animal species. In Mongolia, there are shepherd
families within Mongolia saiga (
Saiga tatarica mongolica
) range and shepherd dogs are suspected to
cause saiga mortalities. However, quantitative information on the effects of dogs on saiga is lacking. In
August 2008 and April 2009, we estimated abundance of dogs in Sharga Nature Reserve by compiling
existing data and interviewing local people to understand public perceptions regarding impacts of dogs
on saiga. Interviews revealed that the majority of local herders believed dogs have only a minor impact
on saiga due to the low density of domestic dogs and the lack of feral dogs in the reserve. However, dogs
are believed to have greater impacts on saiga in harsh winters, when saiga are in poorer health and are
more likely to use areas where dogs are present. Thus, domestic dogs in the study area appear to have no
regular detrimental impact on the local saiga population, but may act as a source of additive mortality in
years with harsh winter conditions