250 research outputs found

    Socio/psychological issues for a Mars mission

    Get PDF
    Some of the socio/psychological problems expected to accompany such a long duration mission as the trip to Mars are addressed. The emphasis is on those issues which are expected to have a bearing on crew performance. Results from research into aircraft accidents, particularly those related to pilot performance, are discussed briefly, as a limited analog to space flight. Significant comparisons are also made to some aspects of long duration Antarctic stays, submarine missions, and oceanographic vessel voyages. Appropriate lessons learned from U.S. and Russian space flight experiences are provided. Design of space missions and systems to enhance crew performance is discussed at length, considering factors external and internal to the crew. The importance of incorporating such design factors early in the design process is stressed

    The Human Spirit in Space

    Get PDF
    The space ships which have come from the human imagination have been extraordinarily successful. Does mankind have the spirit to reside in those ships/ and newly planned space stations for long periods of time? Evidence about the performance of people in isolated and confined environments for long periods of time raises issues that need examination. The Soviet experience in the Salyut 6 shows signs of interpersonal and individual strain. Studies of the Arctic/ Antarctic/ submarines/ oceanographic research vessels/ simulations/ and many other cases indicate similar episodes that effect human performance/ and consequently impinge on mission safety and success

    Soviet Space Stations as Analogs, Second Edition

    Get PDF
    The available literature that discusses the various aspects of the Soviet Salyut 6 and Salyut 7 space staions are examined as related to human productivity. The methodology for this analog was a search of unclassified literature. Additional information was obtained in interviews with the cosmonauts and some Soviet space personnel. Topics include: general layout and design of the spacecraft system; cosmonauts role in maintenance and repair; general layout and design of the Mir complex; effects of the environment on personnel; information and computer systems; organization systems; personality systems; and physical conditin of the cosmonaut

    Explosive Dome Eruptions Modulated by Periodic Gas-Driven Inflation

    Get PDF
    Volcan Santiaguito (Guatemala) “breathes” with extraordinary regularity as the edifice\u27s conduit system accumulates free gas, which periodically vents to the atmosphere. Periodic pressurization controls explosion timing, which nearly always occurs at peak inflation, as detected with tiltmeters. Tilt cycles in January 2012 reveal regular 26 ± 6 min inflation/deflation cycles corresponding to at least ~101 kg/s of gas fluxing the system. Very long period (VLP) earthquakes presage explosions and occur during cycles when inflation rates are most rapid. VLPs locate ~300 m below the vent and indicate mobilization of volatiles, which ascend at ~50 m/s. Rapid gas ascent feeds pyroclast-laden eruptions lasting several minutes and rising to ~1 km. VLPs are not observed during less rapid inflation episodes; instead, gas vents passively through the conduit producing no infrasound and no explosion. These observations intimate that steady gas exsolution and accumulation in shallow reservoirs may drive inflation cycles at open-vent silicic volcanoes

    Explosion dynamics of pyroclastic eruptions at Santiaguito Volcano

    Get PDF
    In Jan. 2003 we monitored explosions at Santiaguito Volcano (Guatemala) with thermal, infrasonic, and seismic sensors. Thermal data from 2 infrared thermometers allowed computation of plume rise speeds, which ranged from 8 to 20 m/s. Rise rates correlated with cumulative thermal radiance, indicating that faster rising plumes correspond to explosions with greater thermal flux. The relationship between rise speeds and elastic energy is less clear. Seismic radiation may not scale well with thermal output and/or rise speed because some of the thermal component may be associated with passive degassing, which does not induce significant seismicity. But non-impulsive gas release is still able to produce a high thermal flux, which is the primary control on buoyant rise speed

    Liquid flow-focused by a gas: jetting, dripping and recirculation

    Full text link
    The liquid cone-jet mode can be produced upon stimulation by a co-flowing gas sheath. Most applications deal with the jet breakup, leading to either of two droplet generation regimes: jetting and dripping. The cone-jet flow pattern is explored by direct axisymmetric VOF numerical simulation; its evolution is studied as the liquid flow-rate is increased around the jetting-dripping transition. As observed in other focused flows such as electrospraying cones upon steady thread emission, the flow displays a strong recirculating pattern within the conical meniscus; it is shown to play a role on the stability of the system, being a precursor to the onset of dripping. Close to the minimum liquid flow rate for steady jetting, the recirculation cell penetrates into the feed tube. Both the jet diameter and the size of the cell are accurately estimated by a simple theoretical model. In addition, the transition from jetting to dripping is numerically analyzed in detail in some illustrative cases, and compared, to good agreement, with a set of experiments.Comment: Submitted to the Physical Review E on December 8th, 200

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate
    corecore