222 research outputs found

    Matrilineal behavioral and physiological changes following the death of a non-alpha matriarch in rhesus macaque

    Get PDF
    In many species, the loss of alpha matriarchs is associated with a number of negative outcomes such as troop fission, eviction, wounding, and reduced vitality. However, whether the dramatic consequences of their loss are due to their role as an old experienced figure or to their alpha status remains unclear. In a retrospective study, we tested that in a semi-free ranging colony of rhesus macaques (Macaca mulatta), the removal of a non-alpha matriarch, who had a large set of kin, led to changes in behavior and physiological stress within her matriline. Following her removal, her matriline increased in aggression, vigilance, and social grooming. Additionally, hierarchical stability, measured by levels of rank changes, decreased within her matriline, and levels of intense aggression by high-ranking animals were more frequent, as well as matrilineal wounding. Although ordinal rank was positively associated with higher chronic hair cortisol concentrations (HCCs) in the months before the matriarch’s removal, following her removal, only those who experienced large increases in rank within her matriline displayed higher HCCs. Changes in matrilineal stability, aggression, behavior, and HCCs within the other two matrilines in the troop were not evident, although caution is needed due to the small sample sizes. We conclude that the removal of the non-alpha matriarch led to matrilineal instability, characterized by higher levels of aggression and subsequent vigilance, rank changes, physiological stress, and grooming. We suggest that non-alpha matriarchs with a large number of kin and social support can be integral to the stability of matrilines.Division of Intramural Research, National Institute of Child Health and Human Development, 1ZIAHD001107- 3

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Disturbance and stress - different meanings in ecological dynamics?

    Get PDF
    There is an increasing frequency of papers addressing disturbance and stress in ecology without clear delimitation of their meaning. Some authors use the terms disturbance and stress exclusively as impacts, while others use them for the entire process, including both causes and effects. In some studies, the disturbance is considered as a result of a temporary impact, which is positive for the ecosystem, while stress is a negative, debilitating impact. By developing and testing simple theoretical models, the authors propose to differentiate disturbance and stress by frequency. If the frequency of the event enables the variable to reach a dynamic equilibrium which might be exhibited without this event, then the event (plus its responses) is a disturbance for the system. If frequency prevents the variable’s return to similar pre-event dynamics and drives or shifts it to a new trajectory, then we are facing stress. The authors propose that changes triggered by the given stimuli can be evaluated on an absolute scale, therefore, direction of change of the variable must not be used to choose one term or the other, i.e. to choose between stress and disturbance

    Ranking Network of a Captive Rhesus Macaque Society: A Sophisticated Corporative Kingdom

    Get PDF
    We develop a three-step computing approach to explore a hierarchical ranking network for a society of captive rhesus macaques. The computed network is sufficiently informative to address the question: Is the ranking network for a rhesus macaque society more like a kingdom or a corporation? Our computations are based on a three-step approach. These steps are devised to deal with the tremendous challenges stemming from the transitivity of dominance as a necessary constraint on the ranking relations among all individual macaques, and the very high sampling heterogeneity in the behavioral conflict data. The first step simultaneously infers the ranking potentials among all network members, which requires accommodation of heterogeneous measurement error inherent in behavioral data. Our second step estimates the social rank for all individuals by minimizing the network-wide errors in the ranking potentials. The third step provides a way to compute confidence bounds for selected empirical features in the social ranking. We apply this approach to two sets of conflict data pertaining to two captive societies of adult rhesus macaques. The resultant ranking network for each society is found to be a sophisticated mixture of both a kingdom and a corporation. Also, for validation purposes, we reanalyze conflict data from twenty longhorn sheep and demonstrate that our three-step approach is capable of correctly computing a ranking network by eliminating all ranking error

    Effect of behavioural sampling methods on local and global social network metrics: a case-study of three macaque species

    Get PDF
    Social network analysis (SNA) is a powerful, quantitative tool to measure animals’ direct and indirect social connectedness in the context of social groups. However, the extent to which behavioural sampling methods influence SNA metrics remains unclear. To fill this gap, here we compare network indices of grooming, huddling, and aggression calculated from data collected from three macaque species through two sampling methods: focal animal sampling (FAS) and all-occurrences behaviour sampling (ABS). We found that measures of direct connectedness (degree centrality, and network density) were correlated between FAS and ABS for all social behaviours. Eigenvector and betweenness centralities were correlated for grooming and aggression networks across all species. In contrast, for huddling, we found a correlation only for betweenness centrality while eigenvector centralities were correlated only for the tolerant bonnet macaques but not so for the despotic rhesus macaque. Grooming and huddling network modularity and centralization were correlated between FAS and ABS for all but three of the eight groups. In contrast, for aggression network, we found a correlation for network centralization but not modularity between the sampling methodologies. We discuss how our findings provide researchers with new guidelines regarding choosing the appropriate sampling method to estimate social network metrics

    Personality trait structures across three species of Macaca, using survey ratings of responses to conspecifics and humans

    Get PDF
    Comparative studies reliant on single personality surveys to rate wild primates are scarce yet remain critical for developing a holistic comparative understanding of personality. Differences in survey design, item exclusion, and factor selection impede cross-study comparisons. To address these challenges, we used consistently collected data to assess personality trait structures in wild rhesus (Macaca mulatta), bonnet (M. radiata), and long-tailed (M. fascicularis) macaques that varied in their degree of phylogenetic closeness, species-typical social styles, and anthropogenic exposure in urban or urban-rural environments. We administered 51-item personality surveys to familiar raters, and, after reliability and structure screenings, isolated 4–5 factor solutions among the species. Four consistent factors emerged: Confident, Sociable, Active, and Irritable/Equable. This latter factor had differential expression across species. Item composition of the Irritable/Equable factor was consistent with their anticipated differences in social styles, but confounded by cross-site anthropogenic variation. We also administered a 43-item survey confined to human-primate situations which paralleled our findings of social style variation, while also exhibiting variation that aligned with population differences in human density. Our findings indicate that macaque personality trait structures may be emergent outcomes of evolutionary and/or socioecological processes, but further research is needed to parse these processes’ relative contributions

    Detecting Instability in Animal Social Networks: Genetic Fragmentation Is Associated with Social Instability in Rhesus Macaques

    Get PDF
    The persistence of biological systems requires evolved mechanisms which promote stability. Cohesive primate social groups are one example of stable biological systems, which persist in spite of regular conflict. We suggest that genetic relatedness and its associated kinship structure are a potential source of stability in primate social groups as kinship structure is an important organizing principle in many animal societies. We investigated the effect of average genetic relatedness per matrilineal family on the stability of matrilineal grooming and agonistic interactions in 48 matrilines from seven captive groups of rhesus macaques. Matrilines with low average genetic relatedness show increased family-level instability such as: more sub-grouping in their matrilineal groom network, more frequent fighting with kin, and higher rates of wounding. Family-level instability in multiple matrilines within a group is further associated with group-level instability such as increased wounding. Stability appears to arise from the presence of clear matrilineal structure in the rhesus macaque group hierarchy, which is derived from cohesion among kin in their affiliative and agonistic interactions with each other. We conclude that genetic relatedness and kinship structure are an important source of group stability in animal societies, particularly when dominance and/or affilative interactions are typically governed by kinship

    Relationship between dominance hierarchy steepness and rank-relatedness of benefits in primates

    Get PDF
    In animal social groups, the extent to which individuals consistently win agonistic interactions and their ability to monopolize resources represent two core aspects of their competitive regime. However, whether these two aspects are closely correlated within groups has rarely been studied. Here, we tested the hypothesis that hierarchy steepness, which is generally used to represent power differentials between group members, predicts the variation in the distribution of fitness-related benefits (i.e., fecundity, infant survival, mating success and feeding success) in relation to individual dominance ranks. We tested this hypothesis in primate groups using comparative phylogenetic meta-analytical techniques. Specifically, we reviewed published and unpublished studies to extract data on individual dominance ranks, their access to fitness-related benefits and hierarchy steepness. We collected and included in our analysis a total of 153 data points, representing 27 species (including two chimpanzee sub-species). From these, we used four common methods to measure individual dominance ranks and hierarchy steepness, i.e., Dij-based normalized David's scores, randomized Elo-ratings, and David's scores and Elo-ratings estimated in Bayesian frameworks. We found that hierarchy steepness had no effect on the strength of the relationship between dominance rank and access to fitness-related benefits. Our results suggest that hierarchy steepness does not reflect between-group variation in the extent to which individual dominance affects the acquisition of fitness-related benefits in primates. Although the ability to win agonistic encounters is essential, we speculate that other behavioral strategies adopted by individuals may play crucial roles in resource acquisition in animal competitive regimes
    corecore