73 research outputs found
On Refinements of Boolean and Parametric Modal Transition Systems
We consider the extensions of modal transition systems (MTS), namely Boolean
MTS and parametric MTS and we investigate the refinement problems over both
classes. Firstly, we reduce the problem of modal refinement over both classes
to a problem solvable by a QBF solver and provide experimental results showing
our technique scales well. Secondly, we extend the algorithm for thorough
refinement of MTS providing better complexity then via reductions to previously
studied problems. Finally, we investigate the relationship between modal and
thorough refinement on the two classes and show how the thorough refinement can
be approximated by the modal refinement
Quantitative Modal Transition Systems
International audienceThis extended abstract offers a brief survey presentation of the specification formalism of modal transition systems and its recent extensions to the quantitative setting of timed as well as stochastic systems. Some applications will also be briefly mentioned
Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach
Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies
Bayesian inference of accurate population sizes and FRET efficiencies from single diffusing biomolecules.
It is of significant biophysical interest to obtain accurate intramolecular distance information and population sizes from single-molecule Förster resonance energy transfer (smFRET) data obtained from biomolecules in solution. Experimental methods of increasing cost and complexity are being developed to improve the accuracy and precision of data collection. However, the analysis of smFRET data sets currently relies on simplistic, and often arbitrary methods, for the selection and denoising of fluorescent bursts. Although these methods are satisfactory for the analysis of simple, low-noise systems with intermediate FRET efficiencies, they display systematic inaccuracies when applied to more complex systems. We have developed an inference method for the analysis of smFRET data from solution studies based on rigorous model-based Bayesian techniques. We implement a Monte Carlo Markov chain (MCMC) based algorithm that simultaneously estimates population sizes and intramolecular distance information directly from a raw smFRET data set, with no intermediate event selection and denoising steps. Here, we present both our parametric model of the smFRET process and the algorithm developed for data analysis. We test the algorithm using a combination of simulated data sets and data from dual-labeled DNA molecules. We demonstrate that our model-based method systematically outperforms threshold-based techniques in accurately inferring both population sizes and intramolecular distances.This is the final published version. It's also available from ACS in Analytical Chemistry: http://pubs.acs.org/doi/pdf/10.1021/ac501188r
Precision and accuracy of single-molecule FRET measurements - a multi-laboratory benchmark study
Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods
The use of it tools for the simulation of economic processes
This research paper presents an attempt to assess available IT tools supporting
process management, namely Aris, Adonis, iGrafx and IBM BPM. It was indicated
that the basic functionality of these tools is similar, but while using the same tools
for modeling more complex cases there are substantial differences in the capabilities
of description and simulation of economic processes
- …