3,957 research outputs found
NIR spectroscopy of the Sun and HD20010 - Compiling a new linelist in the NIR
Context: Effective temperature, surface gravity, and metallicity are basic
spectroscopic stellar parameters necessary to characterize a star or a
planetary system. Reliable atmospheric parameters for FGK stars have been
obtained mostly from methods that relay on high resolution and high
signal-to-noise optical spectroscopy. The advent of a new generation of high
resolution near-IR spectrographs opens the possibility of using classic
spectroscopic methods with high resolution and high signal-to-noise in the NIR
spectral window. Aims: We aim to compile a new iron line list in the NIR from a
solar spectrum to derive precise stellar atmospheric parameters, comparable to
the ones already obtained from high resolution optical spectra. The spectral
range covers 10 000 {\AA} to 25 000 {\AA}, which is equivalent to the Y, J, H,
and K bands. Methods: Our spectroscopic analysis is based on the iron
excitation and ionization balance done in LTE. We use a high resolution and
high signal-to-noise ratio spectrum of the Sun from the Kitt Peak telescope as
a starting point to compile the iron line list. The oscillator strengths (log
gf) of the iron lines were calibrated for the Sun. The abundance analysis was
done using the MOOG code after measuring equivalent widths of 357 solar iron
lines. Results: We successfully derived stellar atmospheric parameters for the
Sun. Furthermore, we analysed HD20010, a F8IV star, from which we derived
stellar atmospheric parameters using the same line list as for the Sun. The
spectrum was obtained from the CRIRES- POP database. The results are compatible
with the ones found in the literature, confirming the reliability of our line
list. However, due to the quality of the data we obtain large errors.Comment: 9 pages and 9 figure
Experimental verification of microbending theory using mode coupling to discrete cladding modes
Visual SLAM and Moving-object Detection for a Small-size Humanoid Robot
100學年度研究獎補助論文[[abstract]]In the paper, a novel moving object detection (MOD) algorithm is developed and integrated with robot visual Simultaneous Localization and Mapping (vSLAM). The moving object is assumed to be a rigid body and its coordinate system in space is represented by a position vector and a rotation matrix. The MOD algorithm is composed of detection of image features, initialization of image features, and calculation of object coordinates. Experimentation is implemented on a small-size humanoid robot and the results show that the performance of the proposed algorithm is efficient for robot visual SLAM and moving object detection.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]電子版[[booktype]]紙
Effects of Spatially Nonuniform Gain on Lasing Modes in Weakly Scattering Random Systems
A study on the effects of optical gain nonuniformly distributed in
one-dimensional random systems is presented. It is demonstrated numerically
that even without gain saturation and mode competition, the spatial
nonuniformity of gain can cause dramatic and complicated changes to lasing
modes. Lasing modes are decomposed in terms of the quasi modes of the passive
system to monitor the changes. As the gain distribution changes gradually from
uniform to nonuniform, the amount of mode mixing increases. Furthermore, we
investigate new lasing modes created by nonuniform gain distributions. We find
that new lasing modes may disappear together with existing lasing modes,
thereby causing fluctuations in the local density of lasing states.Comment: 26 pages, 10 figures (quality reduced for arXiv
Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic:Margin Uplift and Plate Tectonics
Tectonic models predict that following breakup, rift margins undergo only decaying thermal
subsidence during their postrift evolution. However, postbreakup stratigraphy beneath the NE Atlantic shelves
shows evidence of regional-scale unconformities, commonly cited as outer margin responses to inner margin
episodic uplift, including the formation of coastal mountains. The origin of these events remains enigmatic. We
present a seismic reflection study from the Greenland Fracture Zone-East Greenland Ridge (GFZ-EGR) and the
NE Greenland shelf. We document a regional intra-Miocene seismic unconformity (IMU), which marks the
termination of synrift deposition in the deep-sea basins and onset of (i) thermomechanical coupling across
the GFZ, (ii) basin compression, and (iii) contourite deposition, north of the EGR. The onset of coupling across
the GFZ is constrained by results of 2-D flexural backstripping. We explain the thermomechanical coupling
and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and
Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is
linked to onset of uplift and massive shelf progradation on the NE Greenland margin. Given an estimated
middle to late Miocene (~15–10Ma) age of the IMU, we speculate that the event is synchronous with uplift of
the east and west Greenland margins. The correlation between margin uplift and plate motion changes further
indicates that the uplift was triggered by plate tectonic forces, induced perhaps by a change in the Iceland
plume (a hot pulse) and/or by changes in intraplate stresses related to global tectonics
Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features
BackgroundThe thickness of the cortical mantle is a sensitive measure for identifying alterations in cortical structure. We aimed to explore whether first episode schizophrenia patients already show a significant cortical thinning and whether cortical thickness anomalies may significantly influence clinical and cognitive features.MethodWe investigated regional changes in cortical thickness in a large and heterogeneous sample of schizophrenia spectrum patients (n=142) at their first break of the illness and healthy controls (n=83). Magnetic resonance imaging brain scans (1.5 T) were obtained and images were analyzed by using BRAINS2. The contribution of sociodemographic, cognitive and clinical characterictics was investigated.ResultsPatients showed a significant total cortical thinning (F=17.55, d=−0.62, p0.53). No significant group × gender interactions were observed (all p’s>0.15). There were no significant associations between the clinical and pre-morbid variables and cortical thickness measurements (all r’s<0.12). A weak significant negative correlation between attention and total (r=−0.24, p=0.021) and parietal cortical thickness (r=−0.27, p=0.009) was found in patients (thicker cortex was associated with lower attention). Our data revealed a similar pattern of cortical thickness changes related to age in patients and controls.ConclusionsCortical thinning is independent of gender, age, age of onset and duration of the illness and does not seem to significantly influence clinical and functional symptomatology. These findings support a primary neuro-development disorder affecting the normal cerebral cortex development in schizophrenia
Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex
The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network
(DMN) remains largely unknown. Here we use intracranial recordings in
the human posteromedial cortex (PMC), a core node within the DMN,
during conditions of cued rest, autobiographical judgments, and
arithmetic processing. We found a heterogeneous profile of PMC
responses in functional, spatial, and temporal domains. Although the
majority of PMC sites showed increased broad gamma band activity
(30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial
cortex, responded selectively to autobiographical stimuli. However, no
site responded to both conditions, even though they were located within
the boundaries of the DMN identified with resting-state functional
imaging and similarly deactivated during arithmetic processing. These
findings, which provide electrophysiological evidence for heterogeneity
within the core of the DMN, will have important implications for
neuroimaging studies of the DMN
Analysis of symmetries in models of multi-strain infections
In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases
Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: Pre- and postsynaptic components
Intracellular recordings were performed on hippocampal CA3 neuronsin vitro to investigate the inhibitory tonus generated by endogenously produced adenosine in this brain region. Bath application of the highly selective adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine at concentrations up to 100 nM induced both spontaneous and stimulus-evoked epileptiform burst discharges. Once induced, the 1,3-dipropyl-8-cyclopentylxanthine-evoked epileptiform activity was apparently irreversible even after prolonged superfusion with drug-free solution. The blockade of glutamatergic excitatory synaptic transmission by preincubation of the slices with the amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 μM), but not with theN-methyl-d-aspartate receptor antagonistd-2-amino-5-phosphonovaleric acid (50/μM), prevented the induction of epileptiform activity by 1,3-dipropyl-8-cyclopentylxanthine. The generation of the burst discharges was independent of the membrane potential, and the amplitude of the slow component of the paroxysmal depolarization shift increased with hyperpolarization, indicating that the 1,3-dipropyl-8-cyclopentylxanthine-induced bursts were synaptically mediated events. Recordings from tetrodotoxin-treated CA3 neurons revealed a strong postsynaptic component of endogenous adenosinergic inhibition. Both 1,3-dipropyl-8-cyclopentylxanthine and the adenosine-degrading enzyme adenosine deaminase produced an apparently irreversible depolarization of the membrane potential by about 20 mV. Sometimes, this depolarization attained the threshold for the generation of putative calcium spikes, but no potential changes resembling paroxysmal depolarization shift-like events were observed
- …
