954 research outputs found

    The influence of the dechanneling process on the photon emission by an ultra-relativistc positron channeling in a periodically bent crystal

    Full text link
    We investigate, both analytically and numerically, the influence of the dechanneling process on the parameters of undulator radiation generated by ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due either to the propagation of a transverse acoustic wave through the crystal, or due to the static strain as it occurs in superlattices. In either case the periodically bent crystal serves as an undulator which allows to generate X-ray and gamma-radiation. We propose the scheme for accurate quantitative treatment of the radiation in presence of the dechanneling. The scheme includes (i) the analytic expression for spectral-angular distribution which contains, as a parameter, the dechanneling length, (ii) the simulation procedure of the dechanneling process of a positron in periodically bent crystals. Using these we calculate the dechanneling lengths of 5 GeV positrons channeling in Si, Ge and W crystals, and the spectral-angular and spectral distributions of the undulator over broad ranges of the photons. The calculations are performed for various parameters of the channel bending.Comment: published in J. Phys. G: Nucl. Part. Phys. 27 (2001) 95-125, http://www.iop.or

    Two-stage evolution of mantle peridotites from the Stalemate Fracture Zone, northwestern Pacific

    Get PDF
    This paper reports the results of a mineralogical study of 14 mantle peridotite samples dredged in 2009 from the eastern slope of the northwestern segment of the Stalemate Ridge in the northwestern Pacific during cruise SO201-KALMAR Leg 1b of the R/V Sonne. The sample collection included four serpentinized and silicified dunites and ten variably serpentinized lherzolites. The compositions of primary minerals (clinopyroxene, orthopyroxene, and spinel) change systematically from the lherzolites to dunites. Spinel from the lherzolites shows higher Mg# and lower Cr# values (0.65-0.68 and 0.26-0.33, respectively) compared with spinel from the dunites (Mg# = 0.56-0.64 and Cr# = 0.38-0.43). Clinopyroxene from the lherzolites is less magnesian (Mg# = 91.7-92.4) than clinopyroxene from dunite sample DR37-3 (Mg# = 93.7). Based on the obtained data, it was concluded that the lherzolites of the Stalemate Fracture Zone were derived by 10-12% near-fractional melting of a DMM-type depleted mantle reservoir beneath the Kula-Pacific spreading center. The dunites were produced by interaction of residual lherzolites with sodium- and titaniumrich melt and are probably fragments of a network of dunite channels in the shallow mantle. The moderately depleted composition of minerals clearly distinguishes the lherzolites from the strongly depleted peridotites of the East Pacific Rise and indicates the existence of slow-spreading mid-ocean ridges in the Pacific Ocean during the Cretaceous-Paleogene

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Immediate outcomes of AVNeo in combination with coronary artery bypass grafting

    Get PDF
    Aim. To evaluate immediate outcomes of the Ozaki procedure in patients with coronary artery bypass grafting (CABG).Material and methods. This retrospective study included 416 patients operated on at the Federal Center of Cardiovascular Surgery (Penza). The patients were divided into two groups. The first group included 139 patients who underwent the AVNeo procedure in combination with CABG. The second group included 277 patients who underwent a single AVNeo procedure.Results. The median time of cardiopulmonary bypass and myocardial ischemia in the AVNeo+CABG group was 146 (134-165) and 115 (104-125), respectively, while in the AVNeo group — 117 (102-136) and 96 (82-109), respectively. The mean aortic valve pressure gradient immediately after surgery in the AVNeo+CABG group was 5,9±3,3, while in the AVNeo group — 6,4±3,1. Mortality in the AVNeo+CABG group was 2,8% (n=4), while in the AVNeo group — 0,3% (n=1). Inhospital survival in the AVNeo+CABG group was 97,1%, while in the AVNeo group — 99,6%. In the AVNeo+CABG group, there were following death causes: perioperative myocardial infarction (n=2), pneumonia (n=1), multiple organ failure (n=1). In the AVNeo group, the cause of the only fatal outcome was multiple organ failure. Only one predictor of inhospital mortality was identified — resternotomy for bleeding. In the case of resternotomy, inhospital death risk increases by 1,3 times for each day of the postoperative period. Cardiopulmonary bypass time, myocardial infarction, and operation duration do not affect mortality. The combination of AVNeo with CABG also does not affect inhospital mortality (p=0,1).Conclusion. The combination of the AVNeo procedure with CABG is an effective and safe procedure in the immediate period

    Triple GEM Tracking Detectors for the BM@N Experiment

    Get PDF
    BM@N (Baryonic Matter at the Nuclotron) is the fixed target experiment aimed to study nuclear matter in the relativistic heavy ion collisions at the Nuclotron accelerator in JINR. The BM@N tracking system is based on Gas Electron Multipliers (GEM) detectors, mounted inside the BM@N analyzing magnet. The structure of the GEM detectors and the results of study of their characteristics are presented. The GEM detectors are integrated into the BM@N experimental setup and data acquisition system. The results of the first test of the GEM tracking system in the technical run with the deuteron beam are shortly reviewed

    Comparisons between Tethyan Anorthosite-bearing Ophiolites and Archean Anorthosite-bearing Layered Intrusions: Implications for Archean Geodynamic Processes

    Get PDF
    Elucidating the petrogenesis and geodynamic setting(s) of anorthosites in Archean layered intrusions and Tethyan ophiolites has significant implications for crustal evolution and growth throughout Earth history. Archean anorthosite-bearing layered intrusions occur on every continent. Tethyan ophiolites occur in Europe, Africa, and Asia. In this contribution, the field, petrographic, petrological, and geochemical characteristics of 100 Tethyan anorthosite-bearing ophiolites and 155 Archean anorthosite-bearing layered intrusions are compared. Tethyan anorthosite-bearing ophiolites range from Devonian to Paleocene in age, are variably composite, contain anorthosites with highly calcic (An44-100) plagioclase and magmatic amphibole. These ophiolites formed predominantly at convergent plate margins, with some forming in mid-ocean ridge, continental rift, and mantle plume settings. The predominantly convergent plate margin tectonic setting of Tethyan anorthosite-bearing ophiolites is indicated by negative Nb and Ti anomalies and magmatic amphibole. Archean anorthosite-bearing layered intrusions are Eoarchean to Neoarchean in age, have megacrystic anorthosites with highly calcic (An20-100) plagioclase and magmatic amphibole and are interlayered with gabbros and leucogabbros and intrude pillow basalts. These Archean layered intrusions are interpreted to have predominantly formed at convergent plate margins, with the remainder forming in mantle plume, continental rift, oceanic plateau, post-orogenic, anorogenic, mid-ocean ridge, and passive continental margin settings. These layered intrusions predominantly crystallized from hydrous Ca- and Al-rich tholeiitic magmas. The field, petrographic and geochemical similarities between Archean and Tethyan anorthosites indicate that they were produced by similar geodynamic processes mainly in suprasubduction zone settings. We suggest that Archean anorthosite-bearing layered intrusions and spatially associated greenstone belts represent dismembered subduction-related Archean ophiolites
    corecore