76 research outputs found

    Quantitative analysis methods for studying fenestrations in liver sinusoidal endothelial cells. A comparative study

    Get PDF
    Liver Sinusoidal Endothelial Cells (LSEC) line the hepatic vasculature providing blood filtration via transmembrane nanopores called fenestrations. These structures are 50−300 nm in diameter, which is below the resolution limit of a conventional light microscopy. To date, there is no standardized method of fenestration image analysis. With this study, we provide and compare three different approaches: manual measurements, a semi-automatic (threshold-based) method, and an automatic method based on user-friendly open source machine learning software. Images were obtained using three super resolution techniques – atomic force microscopy (AFM), scanning electron microscopy (SEM), and structured illumination microscopy (SIM). Parameters describing fenestrations such as diameter, area, roundness, frequency, and porosity were measured. Finally, we studied the user bias by comparison of the data obtained by five different users applying provided analysis methods

    Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children

    Get PDF
    Background: Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) may be a risk factor for neurodevelopmental deficits and disorders, but evidence is inconsistent. Objectives: We investigated whether prenatal exposure to PFAS were associated with childhood diagnosis of attention-deficit/hyperactivity disorder (ADHD) or autism spectrum disorder (ASD). Methods: This study was based on the Norwegian Mother, Father and Child Cohort Study and included n = 821 ADHD cases, n = 400 ASD cases and n = 980 controls. Diagnostic cases were identified by linkage with the Norwegian Patient Registry. In addition, we used data from the Medical Birth Registry of Norway. The study included the following PFAS measured in maternal plasma sampled mid-pregnancy: Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptanesulfonic acid (PFHpS), and perfluorooctane sulfonate (PFOS). Relationships between individual PFAS and ADHD or ASD diagnoses were examined using multivariable adjusted logistic regression models. We also tested for possible non-linear exposure-outcome associations. Further, we investigated the PFAS mixture associations with ASD and ADHD diagnoses using a quantile-based g-computation approach. Results: Odds of ASD was significantly elevated in PFOA quartile 2 [OR = 1.71 (95% CI: 1.20, 2.45)] compared to quartile 1, and PFOA appeared to have a non-linear, inverted U-shaped dose-response relationship with ASD. PFOA was also associated with increased odds of ADHD, mainly in quartile 2 [OR = 1.54 (95% CI: 1.16, 2.04)] compared to quartile 1, and displayed a non-linear relationship in the restricted cubic spline model. Several PFAS (PFUnDA, PFDA, and PFOS) were inversely associated with odds of ADHD and/or ASD. Some of the associations were modified by child sex and maternal education. The overall PFAS mixture was inversely associated with ASD [OR = 0.76 (95% CI: 0.64, 0.90)] as well as the carboxylate mixture [OR = 0.79 (95% CI: 0.68, 0.93)] and the sulfonate mixture [OR = 0.84 (95% CI: 0.73, 0.96)]. Conclusion: Prenatal exposure to PFOA was associated with increased risk of ASD and ADHD in children. For some PFAS, as well as their mixtures, there were inverse associations with ASD and/or ADHD. However, the inverse associations reported herein should not be interpreted as protective effects, but rather that there could be some unresolved confounding for these relationships. The epidemiologic literature linking PFAS exposures with neurodevelopmental outcomes is still inconclusive, suggesting the need for more research to elucidate the neurotoxicological potential of PFAS during early development

    Plasma CCN2/connective tissue growth factor is associated with right ventricular dysfunction in patients with neuroendocrine tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoid heart disease, a known complication of neuroendocrine tumors, is characterized by right heart fibrotic lesions. Carcinoid heart disease has traditionally been defined by the degree of valvular involvement. Right ventricular (RV) dysfunction due to mural involvement may also be a manifestation. Connective tissue growth factor (CCN2) is elevated in many fibrotic disorders. Its role in carcinoid heart disease is unknown. We sought to investigate the relationship between plasma CCN2 and valvular and mural involvement in carcinoid heart disease.</p> <p>Methods</p> <p>Echocardiography was performed in 69 patients with neuroendocrine tumors. RV function was assessed using tissue Doppler analysis of myocardial systolic strain. Plasma CCN2 was analyzed using an enzyme-linked immunosorbent assay. Mann-Whitney U, Kruskal-Wallis, Chi-squared and Fisher's exact tests were used to compare groups where appropriate. Linear regression was used to evaluate correlation.</p> <p>Results</p> <p>Mean strain was -21% ± 5. Thirty-three patients had reduced RV function (strain > -20%, mean -16% ± 3). Of these, 8 had no or minimal tricuspid and/or pulmonary regurgitation (TR/PR). Thirty-six patients had normal or mildly reduced RV function (strain ≤ -20%, mean -25% ± 3). There was a significant inverse correlation between RV function and plasma CCN2 levels (r = 0.47, p < 0.001). Patients with reduced RV function had higher plasma CCN2 levels than those with normal or mildly reduced RV function (p < 0.001). Plasma CCN2 ≥ 77 μg/L was an independent predictor of reduced RV function (odds ratio 15.36 [95% CI 4.15;56.86]) and had 88% sensitivity and 69% specificity for its detection (p < 0.001). Plasma CCN2 was elevated in patients with mild or greater TR/PR compared to those with no or minimal TR/PR (p = 0.008), with the highest levels seen in moderate to severe TR/PR (p = 0.03).</p> <p>Conclusions</p> <p>Elevated plasma CCN2 levels are associated with RV dysfunction and valvular regurgitation in NET patients. CCN2 may play a role in neuroendocrine tumor-related cardiac fibrosis and may serve as a marker of its earliest stages.</p

    Secretogranin II; a Protein Increased in the Myocardium and Circulation in Heart Failure with Cardioprotective Properties

    Get PDF
    Background: Several beneficial effects have been demonstrated for secretogranin II (SgII) in non-cardiac tissue. As cardiac production of chromogranin A and B, two related proteins, is increased in heart failure (HF), we hypothesized that SgII could play a role in cardiovascular pathophysiology. Methodology/Principal Findings: SgII production was characterized in a post-myocardial infarction heart failure (HF) mouse model, functional properties explored in experimental models, and circulating levels measured in mice and patients with stable HF of moderate severity. SgII mRNA levels were 10.5 fold upregulated in the left ventricle (LV) of animals with myocardial infarction and HF (p&lt;0.001 vs. sham-operated animals). SgII protein levels were also increased in the LV, but not in other organs investigated. SgII was produced in several cell types in the myocardium and cardiomyocyte synthesis of SgII was potently induced by transforming growth factor-beta and norepinephrine stimulation in vitro. Processing of SgII to shorter peptides was enhanced in the failing myocardium due to increased levels of the proteases PC1/3 and PC2 and circulating SgII levels were increased in mice with HF. Examining a pathophysiological role of SgII in the initial phase of post-infarction HF, the SgII fragment secretoneurin reduced myocardial ischemia-reperfusion injury and cardiomyocyte apoptosis by 30% and rapidly increased cardiomyocyte Erk1/2 and Stat3 phosphorylation. SgII levels were also higher in patients with stable, chronic HF compared to age-and gender-matched control subjects: median 0.16 (Q1-3 0.14-0.18) vs. 0.12 (0.10-0.14) nmol/L, p&lt;0.001. Conclusions: We demonstrate increased myocardial SgII production and processing in the LV in animals with myocardial infarction and HF, which could be beneficial as the SgII fragment secretoneurin protects from ischemia-reperfusion injury and cardiomyocyte apoptosis. Circulating SgII levels are also increased in patients with chronic, stable HF and may represent a new cardiac biomarker

    Exogenous Visual Orienting Is Associated with Specific Neurotransmitter Genetic Markers: A Population-Based Genetic Association Study

    Get PDF
    Background: Currently, there is a sense that the spatial orienting of attention is related to genotypic variations in cholinergic genes but not to variations in dopaminergic genes. However, reexamination of associations with both cholinergic and dopaminergic genes is warranted because previous studies used endogenous rather than exogenous cues and costs and benefits were not analyzed separately. Examining costs (increases in response time following an invalid precue) and benefits (decreases in response time following a valid pre-cue) separately could be important if dopaminergic genes (implicated in disorders such as attention deficit disorder) independently influence the different processes of orienting (e.g., disengage, move, engage). Methodology/Principal Findings: We tested normal subjects (N = 161) between 18 and 61 years. Participants completed a computer task in which pre-cues preceded the presence of a target. Subjects responded (with a key press) to the location of the target (right versus left of fixation). The cues could be valid (i.e., appear where the target would appear) or invalid (appear contralateral to where the target would appear). DNA sequencing assays were performed on buccal cells to genotype known genetic markers and these were examined for association with task scores. Here we show significant associations between visual orienting and genetic markers (on COMT, DAT1, and APOE; R 2 s from 4 % to 9%). Conclusions/Significance: One measure in particular – the response time cost of a single dim, invalid cue – was associate

    Evidence of nonlinearity in digoxin pharmacokinetics

    Full text link
    Six normal male volunteers received 0.5 mg label doses of digoxin as (a) a bolus intravenous injection over 2 min, (b) a constant rate intravenous infusion over 1 hr, (c) a constant rate intravenous infusion over 3 hr, and (d) a solution in 5% dextrose given orally. Plasma concentrations of digoxin were measured by radioimmunoassay for a 4 day period and urinary excretion for a 6 day period after the single doses. The mean (coefficient of variation) total areas under the plasma concentration-time curves per 0.5 mg of digoxin were (a) 35.55 (14.8%), (b) 30.20 (27.7%), (c) 25.80 (35.5%), and (d) 15.47 (49.9%); the means differed significantly (0.01>p>0.005). The mean (coefficient of variation) total amounts excreted in the urine as a fraction of the dose were (a) 0.689 (6.31%), (b) 0.517 (20.4%), (c) 0.588 (16.8%), and (d) 0.374 (23.4%); the means differed significantly (p<0.001. Both the total clearance and the nonrenal clearance of digoxin differed significantly with the method of intravenous administration. The slower the rate of input of digoxin to the body, the greater were both the total clearance and the nonrenal clearance of the drug, which strongly suggests nonlinear pharmacokinetics .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45078/1/10928_2005_Article_BF01068079.pd

    Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation

    Get PDF
    Studies of the global sea-level budget (SLB) and the global ocean-mass budget (OMB) are essential to assess the reliability of our knowledge of sea-level change and its contributors. Here we present datasets for times series of the SLB and OMB elements developed in the framework of ESA's Climate Change Initiative. We use these datasets to assess the SLB and the OMB simultaneously, utilising a consistent framework of uncertainty characterisation. The time series, given at monthly sampling and available at https://doi.org/10.5285/17c2ce31784048de93996275ee976fff (Horwath et al., 2021), include global mean sea-level (GMSL) anomalies from satellite altimetry, the global mean steric component from Argo drifter data with incorporation of sea surface temperature data, the ocean-mass component from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry, the contribution from global glacier mass changes assessed by a global glacier model, the contribution from Greenland Ice Sheet and Antarctic Ice Sheet mass changes assessed by satellite radar altimetry and by GRACE, and the contribution from land water storage anomalies assessed by the global hydrological model WaterGAP (Water Global Assessment and Prognosis). Over the period January 1993–December 2016 (P1, covered by the satellite altimetry records), the mean rate (linear trend) of GMSL is 3.05 ± 0.24 mm yr−1. The steric component is 1.15 ± 0.12 mm yr−1 (38 % of the GMSL trend), and the mass component is 1.75 ± 0.12 mm yr−1 (57 %). The mass component includes 0.64  ± 0.03 mm yr−1 (21 % of the GMSL trend) from glaciers outside Greenland and Antarctica, 0.60 ± 0.04 mm yr−1 (20 %) from Greenland, 0.19 ± 0.04 mm yr−1 (6 %) from Antarctica, and 0.32 ± 0.10 mm yr−1 (10 %) from changes of land water storage. In the period January 2003–August 2016 (P2, covered by GRACE and the Argo drifter system), GMSL rise is higher than in P1 at 3.64 ± 0.26 mm yr−1. This is due to an increase of the mass contributions, now about 2.40 ± 0.13 mm yr−1 (66 % of the GMSL trend), with the largest increase contributed from Greenland, while the steric contribution remained similar at 1.19 ± 0.17 mm yr−1 (now 33 %). The SLB of linear trends is closed for P1 and P2; that is, the GMSL trend agrees with the sum of the steric and mass components within their combined uncertainties. The OMB, which can be evaluated only for P2, shows that our preferred GRACE-based estimate of the ocean-mass trend agrees with the sum of mass contributions within 1.5 times or 0.8 times the combined 1σ uncertainties, depending on the way of assessing the mass contributions. Combined uncertainties (1σ) of the elements involved in the budgets are between 0.29 and 0.42 mm yr−1, on the order of 10 % of GMSL rise. Interannual variations that overlie the long-term trends are coherently represented by the elements of the SLB and the OMB. Even at the level of monthly anomalies the budgets are closed within uncertainties, while also indicating possible origins of remaining misclosures

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
    corecore