36 research outputs found

    Effects of verapamil on atrial fibrillation and its electrophysiological determinants in dogs

    Get PDF
    Background: Atrial tachycardia-induced remodeling promotes the occurrence and maintenance of atrial fibrillation (AF) and decreases L-type Ca2+ current. There is also a clinical suggestion that acute L-type Ca2 channel blockade can promote AF, consistent with an AF promoting effect of Ca2+ channel inhibition. Methods: To evaluate the potential mechanisms of AF promotion by Ca2+ channel blockers, we administered verapamil to morphine-chloralose anesthetized dogs. Diltiazem was used as a comparison drug and autonomic blockade with atropine and nadolol was applied in some experiments. Epicardial mapping with 240 epicardial electrodes was used to evaluate activation during AF. Results: Verapamil caused AF promotion in six dogs, increasing mean duration of AF induced by burst pacing, from 8±4 s (mean±S.E.) to 95±39 s (P<0.01 vs. control) at a loading dose of 0.1 mg/kg and 228±101 s (P<0.0005 vs. control) at a dose of 0.2 mg/kg. Underlying electrophysiological mechanisms were studied in detail in five additional dogs under control conditions and in the presence of the higher dose of verapamil. In these experiments, verapamil shortened mean effective refractory period (ERP) from 122±5 to 114±4 ms (P<0.02) at a cycle length of 300 ms, decreased ERP heterogeneity (from 15±1 to 10±1%, P<0.05), heterogeneously accelerated atrial conduction and decreased the cycle length of AF (94±4 to 84±3 ms, P<0.005). Diltiazem did not affect ERP, AF cycle length or AF duration, but produced conduction acceleration similar to that caused by verapamil (n = 5). In the presence of autonomic blockade, verapamil failed to promote AF and increased, rather than decreasing, refractoriness. Neither verapamil nor diltiazem affected atrial conduction in the presence of autonomic blockade. Epicardial mapping suggested that verapamil promoted AF by increasing the number of simultaneous wavefronts reflected by separate zones of reactivation in each cycle. Conclusions: Verapamil promotes AF in normal dogs by promoting multiple circuit reentry, an effect dependent on intact autonomic tone and not shared by diltiaze

    Differential efficacy of L- and T-type calcium channel blockers in preventing tachycardia-induced atrial remodeling in dogs

    Get PDF
    Background: Tachycardia-induced remodeling likely plays an important role in atrial fibrillation (AF) maintenance and recurrence after cardioversion, and Ca2+ overload may be an important mediator. This study was designed to evaluate the relative efficacies of selective T-type (mibefradil) and L-type (diltiazem) Ca2+-channel blockers in preventing tachycardia-induced atrial remodeling. Methods: Dogs were given daily doses of mibefradil (100 mg), diltiazem (240 mg) or placebo in a blinded fashion, beginning 4 days before and continuing through a 7-day period of atrial pacing at 400 bpm. An electrophysiological study was then performed to assess changes in refractoriness, refractoriness heterogeneity and AF duration. Results: Mean duration of burst-pacing induced AF was similar in placebo (567±203 s) and diltiazem-treated (963±280 s, P = NS) animals, but was much less in mibefradil-treated dogs (3.6±0.9 s, P<0.002) and non-paced controls (6.6±2.7 s). In contrast to mibefradil, diltiazem did not alter tachycardia-induced refractoriness abbreviation or heterogeneity. To exclude inadequate dosing as an explanation for diltiazem's inefficacy, we studied an additional group of dogs treated with 720 mg/day of diltiazem, and again noted no protective effect. Acute intravenous administration of diltiazem to control dogs failed to alter atrial refractoriness or AF duration, excluding a masking of remodeling suppression by offsetting profibrillatory effects of the drug. Conclusions: Whereas the selective T-type Ca2+-channel blocker mibefradil protects against atrial remodeling caused by 7-day atrial tachycardia, the selective L-type blocker diltiazem is without effect. These findings are potentially important for understanding the mechanisms and prevention of clinically-relevant atrial-tachycardia-induced remodelin

    Effects of aleglitazar, a balanced dual peroxisome proliferator-activated receptor α/γ agonist on glycemic and lipid parameters in a primate model of the metabolic syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycemic control and management of dyslipidemia to reduce cardiovascular risk are major therapeutic goals in individuals with type 2 diabetes mellitus (T2DM). This study was performed to evaluate the effects of aleglitazar, a balanced dual peroxisome proliferator-activated receptor α/γ (PPARα/γ) agonist, on both lipid and glycemic parameters in obese, hypertriglyceridemic, insulin-resistant rhesus monkeys.</p> <p>Methods</p> <p>A 135-day efficacy study was performed in six rhesus monkeys. After a 28-day baseline assessment (vehicle only), monkeys received oral aleglitazar 0.03 mg/kg per day for 42 days, followed by a 63-day washout period. Plasma levels of markers of glycemic and lipid regulation were measured at baseline, at the end of the dosing period, and at the end of the washout period.</p> <p>Results</p> <p>Compared with baseline values, aleglitazar 0.03 mg/kg per day reduced triglyceride levels by an average of 89% (328 to 36 mg/dL; P = 0.0035 when normalized for baseline levels) and increased high-density lipoprotein cholesterol levels by 125% (46 to 102 mg/dL; P = 0.0007). Furthermore, aleglitazar reduced low-density lipoprotein cholesterol levels (41%) and increased levels of apolipoprotein A-I (17%) and A-II (17%). Aleglitazar also improved insulin sensitivity by 60% (P = 0.001). Mean body weight was reduced by 5.9% from baseline values with aleglitazar at this dose (P = 0.043).</p> <p>Conclusions</p> <p>Aleglitazar, a dual PPARα/γ agonist, has beneficial effects on both lipid and glucose parameters and may have a therapeutic role in modifying cardiovascular risk factors and improving glycemic control in patients with T2DM.</p

    The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation.

    Get PDF
    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC50). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC50 of PPARγ full agonists had the following statistical parameters: q(2)cv=0.610, Nopt=7, SEPcv=0.505, r(2)pr=0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development

    Biophysical Characterization of a Novel SCN5A Mutation Associated With an Atypical Phenotype of Atrial and Ventricular Arrhythmias and Sudden Death

    Get PDF
    Background: Sudden cardiac death (SCD) is an unexpected death that occurs within an hour of the onset of symptoms. Hereditary primary electrical disorders account for up to 1/3 of all SCD cases in younger individuals and include conditions such as catecholaminergic polymorphic ventricular tachycardia (CPVT). These disorders are caused by mutations in the genes encoding cardiac ion channels, hence they are known as cardiac channelopathies. We identified a novel variant, T1857I, in the C-terminus of Nav1.5 (SCN5A) linked to a family with a CPVT-like phenotype characterized by atrial tachy-arrhythmias and polymorphic ventricular ectopy occurring at rest and with adrenergic stimulation, and a strong family history of SCD. Objective: Our goal was to functionally characterize the novel Nav1.5 variant and determine a possible link between channel gating and clinical phenotype. Methods: We first used electrocardiogram recordings to visualize the patient cardiac electrical properties. Then, we performed voltage-clamp of transiently transfected CHO cells. Lastly, we used the ventricular/atrial models to visualize gating defects on cardiac excitability. Results: Voltage-dependences of both activation and inactivation were right-shifted, the overlap between activation and inactivation predicted increased window currents, the recovery from fast inactivation was slowed, there was no significant difference in late currents, and there was no difference in use-dependent inactivation. The O’Hara-Rudy model suggests ventricular after depolarizations and atrial Grandi-based model suggests a slight prolongation of atrial action potential duration. Conclusion: We conclude that T1857I likely causes a net gain-of-function in Nav1.5 gating, which may in turn lead to ventricular after depolarization, predisposing carriers to tachy-arrhythmias

    Description of the Human Atrial Action Potential Derived From a Single, Congruent Data Source: Novel Computational Models for Integrated Experimental-Numerical Study of Atrial Arrhythmia Mechanisms

    Get PDF
    Introduction: The development of improved diagnosis, management, and treatment strategies for human atrial fibrillation (AF) is a significant and important challenge in order to improve quality of life for millions and reduce the substantial social-economic costs of the condition. As a complex condition demonstrating high variability and relation to other cardiac conditions, the study of AF requires approaches from multiple disciplines including single-cell experimental electrophysiology and computational modeling. Models of human atrial cells are less well parameterized than those of the human ventricle or other mammal species, largely due to the inherent challenges in patch clamping human atrial cells. Such challenges include, frequently, unphysiologically depolarized resting potentials and thus injection of a compensatory hyperpolarizing current, as well as detecting certain ion currents which may be disrupted by the cell isolation process. The aim of this study was to develop a laboratory specific model of human atrial electrophysiology which reproduces exactly the conditions of isolated-cell experiments, including testing of multiple experimental interventions. Methods: Formulations for the primary ion currents characterized by isolated-cell experiments in the Workman laboratory were fit directly to voltage-clamp data; the fast sodium-current was parameterized based on experiments relating resting membrane potential to maximal action potential upstroke velocity; compensatory hyperpolarizing current was included as a constant applied current. These formulations were integrated with three independent human atrial cell models to provide a family of novel models. Extrapolated intact-cell models were developed through removal of the hyperpolarizing current and introduction of terminal repolarization potassium currents. Results: The isolated-cell models quantitatively reproduced experimentally measured properties of excitation in both control and pharmacological and dynamic-clamp interventions. Comparison of isolated and intact-cell models highlighted the importance of reproducing this cellular environment when comparing experimental and simulation data. Conclusion: We have developed a laboratory specific model of the human atrial cell which directly reproduces the experimental isolated-cell conditions and captures human atrial excitation properties. The model may be particularly useful for directly relating model to experiment, and offers a complementary tool to the available set of human atrial cell models with specific advantages resulting from the congruent input data source

    The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease : A Preclinical Perspective

    No full text
    Chronic Kidney Disease (CKD) is a highly prevalent disease with a substantial medical need for new and more efficacious treatments. The Nitric Oxide (NO), soluble guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP) signaling cascade regulates various kidney functions. cGMP directly influences renal blood flow, renin secretion, glomerular function, and tubular exchange processes. Downregulation of NO/sGC/cGMP signaling results in severe kidney pathologies such as CKD. Therefore, treatment strategies aiming to maintain or increase cGMP might have beneficial effects for the treatment of progressive kidney diseases. Within this article, we review the NO/sGC/cGMP signaling cascade and its major pharmacological intervention sites. We specifically focus on the currently known effects of cGMP on kidney function parameters. Finally, we summarize the preclinical evidence for kidney protective effects of NO-donors, PDE inhibitors, sGC stimulators, and sGC activators

    Taspoglutide, a novel human once-weekly analogue of glucagon-like peptide-1, improves glucose homeostasis and body weight in the Zucker diabetic fatty rat

    No full text
    Aim: Glucagon-like peptide-1 (GLP-1) receptor agonists are a novel class of pharmacotherapy for type 2 diabetes. We investigated the effects of a novel, long-acting human GLP-1 analogue, taspoglutide, in the Zucker diabetic fatty (ZDF) rat, an animal model of type 2 diabetes. Methods: Blood glucose and plasma levels of insulin, peptide YY (PYY), glucose-dependent insulinotropic polypeptide (GIP) and triglycerides were measured during oral glucose tolerance tests (oGTT) conducted in ZDF rats treated acutely or chronically with a single long-acting dose of taspoglutide. Pioglitazone was used as a positive control in the chronic study. Postprandial glucose, body weight, glycaemic control and insulin sensitivity were assessed over 21 days in chronically treated animals. Results: Acute treatment with taspoglutide reduced glucose excursion and increased insulin response during oGTT. In chronically treated rats, glucose excursion and levels of GIP, PYY and triglycerides during oGTT on day 21 were significantly reduced. Postprandial glucose levels were significantly lower than vehicle controls by day 15. A significant reduction in body weight gain was noticed by day 8, and continued until the end of the study when body weight was approximately 7% lower in rats treated with taspoglutide compared to vehicle. Glycaemic control (increased levels of 1,5-anhydroglucitol) and insulin sensitivity (Matsuda index) were improved by taspoglutide treatment. Conclusions: Taspoglutide showed typical effects of native GLP-1, with improvement in glucose tolerance, postprandial glucose, body weight, glycaemic control and insulin sensitivity
    corecore