135 research outputs found

    Günther Dietrich 15.11.1911 - 2.10.1972

    Get PDF

    A characteristic lengthscale causes anomalous size effects and boundary programmability in mechanical metamaterials

    Get PDF
    The architecture of mechanical metamaterialsis designed to harness geometry, non-linearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. While a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape-changers or topological insulators: a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations---relevant for small systems---and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials in the thermodynamic limit.Comment: Main text has 4 pages, 4 figures + Methods and Supplementary Informatio

    Cymatics for the cloaking of flexural vibrations in a structured plate

    Get PDF
    Based on rigorous theoretical findings, we present a proof-of-concept design for a structured square cloak enclosing a void in an elastic lattice. We implement high-precision fabrication and experimental testing of an elastic invisibility cloak for flexural waves in a mechanical lattice. This is accompanied by verifications and numerical modelling performed through finite element simulations. The primary advantage of our square lattice cloak, over other designs, is the straightforward implementation and the ease of construction. The elastic lattice cloak, implemented experimentally, shows high efficiency

    On the additive manufacturing, post-tensioning and testing of bi-material tensegrity structures

    Get PDF
    An investigation on the additive manufacturing and the experimental testing of 3D models of tensegrity prisms and columns is presented. An Electron Beam Melting facility (Arcam EBM S12) is employed to 3D print structures composed of tensegrity prisms endowed with rigid bases and temporary supports, which are made out of the titanium alloy Ti6Al4V. The temporary supports are removed after the additive manufacturing phase, when Spectra cross-strings are added to the 3D printed models, and a suitable state of internal prestress is applied to the structure. The experimental part of the study shows that the examined structures feature stiffening-type elastic response under large or moderately large axial strains induced by compressive loading. Such a geometrically nonlinear behavior confirms previous theoretical results available in the literature, and paves the way to the use of tensegrity prisms and columns as innovative mechanical metamaterials and smart devices

    Designing perturbative metamaterials from discrete models

    Get PDF
    Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce ‘perturbative metamaterials’, a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells

    Ergänzende Bemerkungen über Appendicularien aus dem Arabischen Meer

    No full text
    Additional comments on appendicularians found in unsorted parts of catches from the Arabian Sea are given. They concern: (1) specific differences between very young specimens of Oikopleura cornutogastra and 0. fusiformis; (2) the inclusion of LOHMANN's species Oikopleura mediterranea in the genus Folia which now comprises two species, F. gracilis LOHMANN 1896 and 0. mediterranea (LOHMANN 1899 n. n.); (3) the body form of very young Stegosoma magnum; (4) the occurrence of Appendicularia sicula FOL 1874 and (5) that of Kowalweskia oceanica LOHMANN 1899 in the area

    Johannes Krey : 25. April 1912 - 10. Mai 1975

    No full text
    corecore