62 research outputs found

    Estimating the economic burden of cardiovascular events in patients receiving lipid-modifying therapy in the UK.

    Get PDF
    OBJECTIVES: To characterise the costs to the UK National Health Service of cardiovascular (CV) events among individuals receiving lipid-modifying therapy. DESIGN: Retrospective cohort study using Clinical Practice Research Datalink records from 2006 to 2012 to identify individuals with their first and second CV-related hospitalisations (first event and second event cohorts). Within-person differences were used to estimate CV-related outcomes. SETTING: Patients in the UK who had their first CV event between January 2006 and March 2012. PARTICIPANTS: Patients ≥18 years who had a CV event and received at least 2 lipid-modifying therapy prescriptions within 180 days beforehand. PRIMARY AND SECONDARY OUTCOME MEASURES: Direct medical costs (2014 £) were estimated in 3 periods: baseline (pre-event), acute (6 months afterwards) and long-term (subsequent 30 months). Primary outcomes included incremental costs, resource usage and total costs per period. RESULTS: There were 24 093 patients in the first event cohort of whom 5274 were included in the second event cohort. The mean incremental acute CV event costs for the first event and second event cohorts were: coronary artery bypass graft/percutaneous transluminal coronary angioplasty (CABG/PTCA) £5635 and £5823, myocardial infarction £4275 and £4301, ischaemic stroke £3512 and £4572, heart failure £2444 and £3461, unstable angina £2179 and £2489 and transient ischaemic attack £1537 and £1814. The mean incremental long-term costs were: heart failure £848 and £2829, myocardial infarction £922 and £1385, ischaemic stroke £973 and £682, transient ischaemic attack £705 and £1692, unstable angina £328 and £677, and CABG/PTCA £-368 and £599. Hospitalisation accounted for 95% of acute and 61% of long-term incremental costs. Higher comorbidity was associated with higher long-term costs. CONCLUSIONS: Revascularisation and myocardial infarction were associated with the highest incremental costs following a CV event. On the basis of real-world data, the economic burden of CV events in the UK is substantial, particularly among those with greater comorbidity burden

    Thermal performance of two heat exchangers for thermoelectric generators

    Get PDF
    Thermal performance of heat exchanger is important for potential application in integrated solar cell/module and thermoelectric generator (TEG) system. Usually, thermal performance of a heat exchanger for TEGs is analysed by using a 1D heat conduction theory which ignores the detailed phenomena associated with thermo-hydraulics. In this paper, thermal and mass transports in two different exchangers are simulated by means of a steady-state, 3D turbulent flow k -e model with a heat conduction module under various flow rates. In order to simulate an actual working situation of the heat exchangers, hot block with an electric heater is included in the model. TEG model is simplified by using a 1D heat conduction theory, so its thermal performance is equivalent to a real TEG. Natural convection effect on the outside surfaces of the computational model is considered. Computational models and methods used are validated under transient thermal and electrical experimental conditions of a TEG. It is turned out that the two heat exchangers designed have a better thermal performance compared with an existing heat exchanger for TEGs, and more importantly, the fin heat exchanger is more compact and has nearly half temperature rise compared with the tube heat exchanger

    Tungsten Bronze Barium Neodymium Titanate (Ba 6–3 Nd 8+2 Ti 18 O 54 ): An Intrinsic Nanostructured Material and Its Defect Distribution

    Get PDF
    We investigated the structure of the tungsten bronze barium neodymium titanates Ba6–3nNd8+2nTi18O54, which are exploited as microwave dielectric ceramics. They form a complex nanostructure, which resembles a nanofilm with stacking layers of ∼12 Å thickness. The synthesized samples of Ba6–3nNd8+2nTi18O54 (n = 0, 0.3, 0.4, 0.5) are characterized by pentagonal and tetragonal columns, where the A cations are distributed in three symmetrically inequivalent sites. Synchrotron X-ray diffraction and electron energy loss spectroscopy allowed for quantitative analysis of the site occupancy, which determines the defect distribution. This is corroborated by density functional theory calculations. Pentagonal columns are dominated by Ba, and tetragonal columns are dominated by Nd, although specific Nd sites exhibit significant concentrations of Ba. The data indicated significant elongation of the Ba columns in the pentagonal positions and of the Nd columns in tetragonal positions involving a zigzag arrangement of atoms along the b lattice direction. We found that the preferred Ba substitution occurs at Nd[3]/[4] followed by Nd[2] and Nd[1]/[5] sites, which is significantly different to that proposed in earlier studies. Our results on the Ba6–3nNd8+2nTi18O54 “perovskite” superstructure and its defect distribution are particularly valuable in those applications where the optimization of material properties of oxides is imperative; these include not only microwave ceramics but also thermoelectric materials, where the nanostructure and the distribution of the dopants will reduce the thermal conductivity

    Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Transient and steady-state multiphysics numerical simulations are performed to investigate the thermal and electrical performances of a thermoelectric generator (TEG) module placed between hot and cold blocks. Effects of heat radiation, leg length and Seebeck coefficient on the TEG thermal and electrical performances are identified. A new correlation for the Seebeck coefficient with temperature is proposed. Radiation effects on the thermal and electric performances are found to be negligible under both transient and steady-state conditions. The leg length of the TEG module shows a considerable influence on the electrical performance but little on the thermal performance under transient conditions. A nearly linear temperature profile on a leg of the TEG module is identified. The temperature profile of the substrate surfaces is non-uniform, especially in the contacted areas between the straps (tabs) and the substrates.The work is supported by EPSRC SUPERGEN Solar Challenge with grant: EP/K022156/1-Scalable Solar Thermoelectrics and Photovoltaics (SUNTRAP)

    A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Scaling laws serve as a tool to convert the five parameters in a lumped one-diode electrical model of a photovoltaic (PV) cell/module/panel under indoor standard test conditions (STC) into the parameters under any outdoor conditions. By using the transformed parameters, a current-voltage curve can be established under any outdoor conditions to predict the PV cell/module/panel performance. A scaling law is developed for PV modules with and without crossed compound parabolic concentrator (CCPC) based on the experimental current-voltage curves of six flat monocrystalline PV modules collected from literature at variable irradiances and cell temperatures by using nonlinear least squares method. Experiments are performed to validate the model and method on a monocrystalline PV cell at various irradiances and cell temperatures. The proposed scaling law is compared with the existing one, and the former exhibits a much better accuracy when the cell temperature is higher than 40 °C. The scaling law of a triple junction flat PV cell is also compared with that of the monocrystalline cell and the CCPC effects on the scaling law are investigated with the monocrystalline PV cell. It is identified that the CCPCs impose a more significant influence on the scaling law for the monocrystalline PV cell in comparison with the triple junction PV cell. The proposed scaling law is applied to predict the electrical performance of PV/thermal modules with CCPC.The authors gratefully acknowledge the EPSRC Solar Challenge project SUNTRAP (EP/K022156/1) and Sȇr Cymru National Research Network grant 152 for financial support in the UK

    A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells

    Get PDF
    Scaling laws serve as a tool to convert the five parameters in a lumped one-diode electrical model of a photovoltaic (PV) cell/module/panel under indoor standard test conditions (STC) into the parameters under any outdoor conditions. By using the transformed parameters, a current-voltage curve can be established under any outdoor conditions to predict the PV cell/module/panel performance. A scaling law is developed for PV modules with and without crossed compound parabolic concentrator (CCPC) based on the experimental current-voltage curves of six flat monocrystalline PV modules collected from literature at variable irradiances and cell temperatures by using nonlinear least squares method. Experiments are performed to validate the model and method on a monocrystalline PV cell at various irradiances and cell temperatures. The proposed scaling law is compared with the existing one, and the former exhibits a much better accuracy when the cell temperature is higher than 40 °C. The scaling law of a triple junction flat PV cell is also compared with that of the monocrystalline cell and the CCPC effects on the scaling law are investigated with the monocrystalline PV cell. It is identified that the CCPCs impose a more significant influence on the scaling law for the monocrystalline PV cell in comparison with the triple junction PV cell. The proposed scaling law is applied to predict the electrical performance of PV/thermal modules with CCPC

    Scalable solar thermoelectrics and photovoltaics (SUNTRAP)

    Get PDF
    This is the final version of the article. Available from AIP Publishing via the DOI in this record.This paper presents the design, manufacture and electrical test of a novel integrated III:V low concentrator photovoltaic and thermoelectric device for enhanced solar energy harvesting efficiency. The PCB-based platform is a highly reliable means of controlling CPV cell operational temperature under a range of irradiance conditions. The design enables reproducible data acquisition from CPV solar cells whilst minimizing transient time for solid state cooling capability.The authors would like to acknowledge the Sêr Cymru National Research Network and EPSRC for financial support

    A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems

    Get PDF
    A crossed compound parabolic concentrator (CCPC) is applied into a photovoltaic/thermal (PV/T) hybrid solar collector, i.e. concentrating PV/T (CPV/T) collector, to develop new hybrid roof-top CPV/T systems. However, to optimise the system configuration and operational parameters as well as to predict their performances, a coupled optical, thermal and electrical model is essential. We establish this model by integrating a number of submodels sourced from literature as well as from our recent work on incidence-dependent optical efficiency, six-parameter electrical model and scaling law for outdoor conditions. With the model, electrical performance and cell temperature are predicted on specific days for the roof-top systems installed in Glasgow, Penryn and Jaen. Results obtained by the proposed model reasonably agree with monitored data and it is also clarified that the systems operate under off-optimal operating condition. Long-term electric performance of the CPV/T systems is estimated as well. In addition, effects of transient terms in heat transfer and diffuse solar irradiance on electric energy are identified and discussed
    corecore