11 research outputs found

    Integrated Remediation Processes Toward Heavy Metal Removal/Recovery From Various Environments-A Review

    Get PDF
    Addressing heavy metal pollution is one of the hot areas of environmental research. Despite natural existence, various anthropomorphic sources have contributed to an unusually high concentration of heavy metals in the environment. They are characterized by their long persistence in natural environment leading to serious health consequences in humans, animals, and plants even at very low concentrations (1 or 2 μg in some cases). Failure of strict regulations by government authorities is also to be blamed for heavy metal pollution. Several individual treatments, namely, physical, chemical, and biological are being implied to remove heavy metals from the environment. But, they all face challenges in terms of expensiveness and in-situ treatment failure. Hence, integrated processes are gaining popularity as it is reported to achieve the goal effectively in various environmental matrices and will overcome a major drawback of large scale implementation. Integrated processes are the combination of two different methods to achieve a synergistic and an effective effort to remove heavy metals. Most of the review articles published so far mainly focus on individual methods on specific heavy metal removal, that too from a particular environmental matrix only. To the best of our knowledge, this is the first review of this kind that summarizes on various integrated processes for heavy metal removal from all environmental matrices. In addition, we too have discussed on the advantages and disadvantages of each integrated process, with a special mention of the few methods that needs more research attention. To conclude, integrated processes are proved as a right remedial option which has been detaily discussed in the present review. However, more research focus on the process is needed to challenge the in situ operative conditions. We believe, this review on integrated processes will surely evoke a research thrust that could give rise to novel remediation projects for research community in the future

    Essential gene prediction in Drosophila melanogaster using machine learning approaches based on sequence and functional features

    Get PDF
    Genes are termed to be essential if their loss of function compromises viability or results in profound loss of fitness. On the genome scale, these genes can be determined experimentally employing RNAi or knockout screens, but this is very resource intensive. Computational methods for essential gene prediction can overcome this drawback, particularly when intrinsic (e.g. from the protein sequence) as well as extrinsic features (e.g. from transcription profiles) are considered. In this work, we employed machine learning to predict essential genes in Drosophila melanogaster. A total of 27,340 features were generated based on a large variety of different aspects comprising nucleotide and protein sequences, gene networks, protein protein interactions, evolutionary conservation and functional annotations. Employing cross-validation, we obtained an excellent prediction performance. The best model achieved in D. melanogaster a ROCAUC of 0.90, a PR-AUC of 0.30 and a F1 score of 0.34. Our approach considerably outperformed a benchmark method in which only features derived from the protein sequences were used (P < 0.001). Investigating which features contributed to this success, we found all categories of features, most prominently network topological, functional and sequence-based features. To evaluate our approach we performed the same workflow for essential gene prediction in human and achieved an ROC-AUC = 0.97, PR-AUC = 0.73, and F1 = .64. In summary, this study shows that using our well-elaborated assembly of features covering a broad range of intrinsic and extrinsic gene and protein features enabled intelligent systems to predict well the essentiality of genes in an organism

    Network-based features enable prediction of essential genes across diverse organisms.

    No full text
    Machine learning approaches to predict essential genes have gained a lot of traction in recent years. These approaches predominantly make use of sequence and network-based features to predict essential genes. However, the scope of network-based features used by the existing approaches is very narrow. Further, many of these studies focus on predicting essential genes within the same organism, which cannot be readily used to predict essential genes across organisms. Therefore, there is clearly a need for a method that is able to predict essential genes across organisms, by leveraging network-based features. In this study, we extract several sets of network-based features from protein-protein association networks available from the STRING database. Our network features include some common measures of centrality, and also some novel recursive measures recently proposed in social network literature. We extract hundreds of network-based features from networks of 27 diverse organisms to predict the essentiality of 87000+ genes. Our results show that network-based features are statistically significantly better at classifying essential genes across diverse bacterial species, compared to the current state-of-the-art methods, which use mostly sequence and a few 'conventional' network-based features. Our diverse set of network properties gave an AUROC of 0.847 and a precision of 0.320 across 27 organisms. When we augmented the complete set of network features with sequence-derived features, we achieved an improved AUROC of 0.857 and a precision of 0.335. We also constructed a reduced set of 100 sequence and network features, which gave a comparable performance. Further, we show that our features are useful for predicting essential genes in new organisms by using leave-one-species-out validation. Our network features capture the local, global and neighbourhood properties of the network and are hence effective for prediction of essential genes across diverse organisms, even in the absence of other complex biological knowledge. Our approach can be readily exploited to predict essentiality for organisms in interactome databases such as the STRING, where both network and sequence are readily available. All codes are available at https://github.com/RamanLab/nbfpeg

    Assessment of network module identification across complex diseases

    No full text
    International audienc
    corecore