104 research outputs found

    Electron backscatter diffraction analysis unveils foraminiferal calcite microstructure and processes of diagenetic alteration

    Get PDF
    Electron backscatter diffraction (EBSD) analysis enables a unique perspective of the internal microstructure of foraminiferal calcite. Specifically, EBSD provides crystallographic data from within the test, highlighting the highly organised “mesocrystal” structure of crystallographically aligned domains throughout the test, formed by sequential deposits of microgranular calcite. We compared EBSD maps across the test walls of both poorly preserved and well-preserved specimens of the planktonic foraminifera species Globigerinoides ruber and Morozovella crater. The EBSD maps, paired with information about intra-test distributions of Mg/Ca ratios, allowed us to examine the effects of different diagenetic processes on the foraminifera test. In poorly preserved specimens EBSD data show extensive reorganisation of the biogenic crystal microstructure, indicating differing phases of dissolution, re-precipitation and overgrowth. The specimens with the greatest degree of microstructural reorganisation also show an absence of higher concentration magnesium bands, which are typical features of well-preserved specimens. These findings provide important insights into the extent of post-depositional changes, in both microstructure and geochemical signals that must be considered when utilising foraminifera to generate proxy archive data

    Yield Measurements for ^7Be and ^<10>Be Productions from ^<nat>Cu, ^<nat>Ag and ^<197>Au by Bremsstrahlung Irradiation at E_0=200 MeV(II. Radiochemistry)

    Get PDF
    The yields of ^7Be and ^Be produced by bremsstrahlung having a maximum energy (E_0) of 200 MeV in ^Cu, ^Ag and ^Au targets were investigated by the AMS technique at MALT of the University of Tokyo. It was found that the yields at E_0 = 200 MeV were much lower than those at E_0 ≧250 MeV, obtained in our previous work. A change in the yields of the fragmentation component in the target-mass dependence was observed at E_0=200 MeV when compared with those at E_0≧250 MeV. However, the ratios of the fragmentation yield of ^Be to that of ^7Be remained unchanged throughout the concerned E_0

    Pretreatment HLADQA1-HLADRB1 Testing for the Prevention of Azathioprine-Induced Pancreatitis in Inflammatory Bowel Disease: A Prospective Cohort Study

    Get PDF
    INTRODUCTION:Azathioprine-induced pancreatitis is an idiosyncratic and unpredictable response, occurring in up to 7% of azathioprine-exposed patients with inflammatory bowel disease (IBD). The haplotype HLADQA1-HLADRB1*07:01A\u3eC is strongly associated with azathioprine-induced pancreatitis in IBD. We aimed to evaluate whether pretreatment HLADQA1-HLADRB1*07:01A\u3eC screening will reduce the risk of azathioprine-induced pancreatitis.METHODS:Participants with IBD were screened for HLADQA1-HLADRB1*07:01A\u3eC, and participants with a variant genotype were excluded from azathioprine treatment. Wild-type participants were started on azathioprine and followed for 3 months. The incidence of pancreatitis was compared with unscreened historical controls.RESULTS:HLADQA1-HLADRB1*07:01A\u3eC screening resulted in an 11-fold reduction in the incidence of azathioprine-induced pancreatitis (n = 1/328 or 0.30% vs n = 13/373 or 3.4%). In propensity score-matched cohorts (age and sex), HLA DQA1-HLADRB1*07:01A\u3eC screening was significantly associated with a reduction in the incidence of AZA-induced pancreatitis independent of weight, glucocorticoid exposure, and smoking status (adjusted odds ratio = 0.075, 95% confidence interval = 0.01-0.58, P = 0.01). Up to 45% (n = 271/599) of participants were excluded from azathioprine therapy based on the haplotype in the HLADQA1-HLADRB1*07:01A\u3eC-screened cohort.DISCUSSION:HLADQA1-HLADRB1*07:01A\u3eC screening reduced the risk of azathioprine-induced pancreatitis; however, using this strategy to guide the use of azathioprine therapy in IBD may eliminate a large proportion of patients from being eligible for treatment with azathioprine. In regions where there is access to other IBD therapies, and given the short-term and long-term toxicities associated with azathioprine, HLADQA1-HLADRB1*07:01A\u3eC-screening may be a clinically relevant strategy for enhancing the safe use of azathioprine in IBD. In addition, cost-effectiveness analyses are needed to further solidify the utility of HLADQA1-HLADRB1*07:01A\u3eC screening in IBD populations

    Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments

    Get PDF
    © 2016 Fenton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [4.0 license]. The attached file is the published version of the article

    Endless Forams: >34,000 modern planktonic foraminiferal images for taxonomic training and automated species recognition using convolutional neural networks

    Get PDF
    Planktonic foraminiferal species identification is central to many paleoceanographic studies, from selecting species for geochemical research to elucidating the biotic dynamics of microfossil communities relevant to physical oceanographic processes and interconnected phenomena such as climate change. However, few resources exist to train students in the difficult task of discerning amongst closely related species, resulting in diverging taxonomic schools that differ in species concepts and boundaries. This problem is exacerbated by the limited number of taxonomic experts. Here we document our initial progress toward removing these confounding and/or rate‐limiting factors by generating the first extensive image library of modern planktonic foraminifera, providing digital taxonomic training tools and resources, and automating species‐level taxonomic identification of planktonic foraminifera via machine learning using convolution neural networks. Experts identified 34,640 images of modern (extant) planktonic foraminifera to the species level. These images are served as species exemplars through the online portal Endless Forams (endlessforams.org) and a taxonomic training portal hosted on the citizen science platform Zooniverse (zooniverse.org/projects/ahsiang/endless‐forams/). A supervised machine learning classifier was then trained with ~27,000 images of these identified planktonic foraminifera. The best‐performing model provided the correct species name for an image in the validation set 87.4% of the time and included the correct name in its top three guesses 97.7% of the time. Together, these resources provide a rigorous set of training tools in modern planktonic foraminiferal taxonomy and a means of rapidly generating assemblage data via machine learning in future studies for applications such as paleotemperature reconstruction

    Did Photosymbiont Bleaching Lead to the Demise of Planktic Foraminifer Morozovella at the Early Eocene Climatic Optimum?

    Get PDF
    The symbiont-bearing mixed-layer planktic foraminiferal genera Morozovella and Acarinina were among the most important calcifiers of early Paleogene tropical–subtropical oceans. A marked and permanent switch in the abundance of these genera is known to have occurred at low-latitude sites at the beginning of the Early Eocene Climatic Optimum(EECO), such that the relative abundance of Morozovella permanently and significantly decreased along with a progressive reduction in the number of species; concomitantly, the genus Acarinina almost doubled its abundance and diversified. Here we examine planktic foraminiferal assemblages and stable isotope compositions of their tests at Ocean Drilling Program Site 1051 (northwest Atlantic) to detail the timing of this biotic event, to document its details at the species level, and to test a potential cause: the loss of photosymbionts (bleaching). We also provide stable isotope measurements of bulk carbonate to refine the stratigraphy at Site 1051 and to determine when changes in Morozovella species composition and their test size occurred. We demonstrate that the switch in Morozovella and Acarinina abundance occurred rapidly and in coincidence with a negative carbon isotope excursion known as the J event (~53 Ma), which marks the start of the EECO.We provide evidence of photosymbiont loss after the J event from a size-restricted δ13C analysis. However, such inferred bleaching was transitory and also occurred in the acarininids. The geologically rapid switch in planktic foraminiferal genera during the early Eocene was a major evolutionary change within marine biota, but loss of photosymbionts was not the primary causal mechanism
    corecore