579 research outputs found

    The recycling of OMC's carbon reinforcement by solvolysing thermoset matrix. A way of sustainability for composites.

    Get PDF
    Originally developed for high-tech applications, carbon ïŹbre/thermoset matrix composites have been increasingly used in leisure and sports industries, for several years. But the carbon reinforcement is the most expensive constituent, and also the most environmentally impacting in the elaboration of a composite part. To this day, no end-of-life solution or recycling process efficiently exists. This paper aims at demonstrating that recovering the carbon reinforcement is possible, technically and economically speaking. Moreover, it is particularly the basis for a life cycle analysis that assesses benefits and environmental challenges of this recycling loop based on the reinforcement recovery by a solvolysis of the organic matrix. Lastly, the lack of data to consider the better end-of-life option (reuse, recycling, energy recovery and material valorisation) will be underlined

    Influence of crystallinity and particle size on the electrochemical properties of spray pyrolyzed Nd2NiO4+ÎŽ powders

    Get PDF
    This paper is dedicated to the study of the relationship between the Nd2NiO4+ı powder micro-structural properties (especially particle size and crystallinity) and electrochemical properties when the oxide is used as SOFC cathode deposited on 8YSZ electrolyte coated with thin doped ceria. Nano-structured particles of Nd2NiO4+ı with controlled crystallinity, size and morphology have been synthesized using ultrasonic spray pyrolysis (USP). The series and polarization resistances measured on symmetrical half cells Nd2NiO4+ı/YDC/8YSZ/YDC/Nd2NiO4+ı are both found to be dependent on the cathode microstructure and present a similar evolution with temperature. The best results are obtained for highly crystalline cathode powders combined with a small particle size

    Traitement hydrothermal de déchets industriels spéciaux, donnéespour le dimensionnement d'installations industrielles et concepts innovants de réacteurs sonochimique et électrochimique.

    Get PDF
    Les procédés d'oxydation hydrothermale offrent une alternative technico-économique viable pour le traitement des déchets aqueux industriels spéciaux. Afin de promouvoir le développement de cette technologie, des données, nécessaires au dimensionnement des réacteurs, concernant les mécanismes et les chaleurs globales des réactions d'oxydation hydrothermale ont été déterminées. Le mécanisme de la réaction d'oxydation d'une molécule contenant des atomes d'azote, le fénuron (C6H5-NH-CO-N(CH3)2), a été proposé et la chaleur globale de la réaction d'oxydation de l'acide acétique a été évaluée à -925KJ.mol-1. De plus, deux concepts innovants de réacteurs sonochimique et électrochimique ont été développés pour s'affranchir des problÚmes de corrosion et de précipitation des sels rencontrés dans les installations d'oxydation dans l'eau supercritique. Le réacteur sonochimique permet d'activer la réaction d'oxydation en milieu hydrothermal et ainsi d'abaisser les conditions de fonctionnement du réacteur en pression et en température. A 2,8 MPa et 220°C, le taux de conversion de l'acide acétique atteint 83%. Quant au réacteur électrochimique, il a été conçu pour les déchets aqueux salins et consiste à utiliser les sels présents dans le déchet pour générer in situ des espÚces oxydantes actives par électrolyse. Une étude du fonctionnement de la zone d'électrolyse a été réalisé

    Development of an improved falling ball viscometer for high-pressure measurements with supercritical CO<sub>2</sub>

    Get PDF
    International audienceThis study presents the development of an improved technique for viscosity measurements under high pressure. The apparatus is based on the principle of the falling ball viscometer, implemented in a high-pressure autoclave fitted with visualisation windows. The originality here is that the balls fall through a tube open at both ends with a diameter slightly greater than that of the balls, allowing a simplified modelling and numerical simulation. A numerical approach has been used for viscosity determination. Calculations have been made with COMSOL Multiphysics¼ with the laminar Navier–Stokes model for Newtonian mixtures. It includes the specific hydrodynamic effects without the need for a calibration fluid. However, validation experiments were carried out at atmospheric pressure with dimethylsulfoxide (DMSO) at 298, 308 and 318 K and with cocoa butter at 313 and 353 K, with values of viscosity in the range from 1.4 to 45.4 mPa s. Comparative measurements with literature data have been conducted with cocoa butter saturated with carbon dioxide at 313 and 353 K and for pressures ranging from 0.1 to 25 MPa. At 313 K, viscosity varies from 45.4 mPa s to 3.1 mPa s while at 353 K it varies from 12.4 to 1.9 mPa s. For both isotherms tested, within the range 0–15 MPa, the higher the CO2 dissolution in the cocoa butter, the lower the viscosity. However, this decrease in viscosity is more pronounced at the lowest temperature. Above 15 MPa the CO2 dissolution effect on viscosity becomes insignificant, i.e. within the experimental error, due to a counter effect linked with the high hydrostatic pressure. Furthermore, the limits of use of this method have been determined. This technique is revealed as reliable and can therefore be used with other binary systems

    SynthÚse solvothermale supercritique de nanostructures d'oxyde de cérium

    Get PDF
    La synthÚse contrÎlée de nanoparticules constitue toujours un enjeu majeur en science des matériaux (pour des applications telles que la catalyse par exemple) et la voie fluides supercritiques permet de répondre en partie à ce challenge. Dans ce contexte, ce travail de thÚse a été consacré à l élaboration de nanostructures d oxyde de cérium aux caractéristiques contrÎlées (tailles, morphologies, propriétés de surface, ) par synthÚse solvothermale supercritique. A partir de l étude de l influence des paramÚtres opératoires du procédé sur les caractéristiques physico-chimiques des nanomatériaux obtenus, des mécanismes de formation et de fonctionnalisation de surface ont été proposés. D un point de vue applicatif, ces poudres ont été caractérisées qualitativement et quantitativement vis-à-vis de la capture réversible du CO2.The controlled synthesis of nanoparticles remains of key importance in materials science (for applications such as catalysis for instance) and supercritical fluids processes allow partially addressing this challenge. In this context, this PhD work has been dedicated to the synthesis of cerium oxide nanostructures with controlled characteristics (size, morphology, surface property, ) by supercritical solvothermal approaches. Through the study of the influence of process operating parameters on physicochemical characteristics of the synthesized materials, formation and surface modification mechanisms have been proposed. From an applicative point of view, powders have been submitted to qualitative and quantitative characterization towards CO2 capture.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Synergistic assembly of hyperbranched polyethylenimine and fatty acids leading to unusual supramolecular nanocapsules

    Get PDF
    Self-assembly of hyperbranched polyethylenimine (PEI) and fatty acids leads to supramolecular inverted micellar structures that are able to irreversibly transfer water-soluble guest molecules into organic solvents.Perez Prieto, Julia, [email protected] ; Stiriba, Salah Eddine, [email protected]

    High-pressure drop rates in solid-state batch one-step scCO2 foaming of acrylic polymers: A way to stabilize the structure of micro-nano foams

    Get PDF
    One-step solid-state batch scCO2 foaming is used with the target of achieving acrylic polymer micro-nano foams. Foaming is triggered by an average pressure drop (APDR), covering two decades, from 0.3 to 30 MPa.s−1. This study principally addresses the combined beneficial effects of block copolymer addition (BCP, here denoted as MAM) and high APDR. Numerous subtle kinetic parameters actually interplay and compete in the production of the final foams. In particular, the material effective temperature, the effective glass transition temperature of the plasticized system and the instantaneous PDR are physical quantities each having their own kinetics during foaming. The resulting foam morphologies are quantified by SEM microscopy and image analysis. A high APDR and the presence of BCP are shown to play a key role in the final structure of the foams. Over the scrutinized range of saturation temperature (40 °C to 60 °C i.e. rather ‘low’ temperatures in the CO2 supercritical state), the APDR is the main factor for significantly reducing cell size and increasing nuclei density in foams from neat PMMA. In the block copolymer approach, increasing the APDR is of secondary importance as the targeted reduction of the porosity dimensions and augmentation of nuclei density are mostly the consequence of MAM presence. In this latter case, increasing the APDR still promotes the ‘efficiency’ of the BCP nucleants. A real efficient nucleation activity of MAM additive is observed at a very high APDR (30 MPa.s−1), leading to monomodal homogeneous distribution of tiny pores in nearly nanosized foams. At lower APDR, an interesting reproducible double porosity (foams containing intra-wall and inter-wall pores) is detected in PMMA/MAM systems. In such double porosity foams, benefits from the Knudsen effect achieved within well expanded local domains (showing micron-sized pores) may remain meaningful thanks to a locally poorly expanded nanoporous thick solid skeleton encapsulating these local domains. Thereby, the radiative thermal conduction can be minimized and does not override the conductive component at the sample scale. This work provides further insight on acrylic polymer BCP foams influenced by different kinetics

    A Sweet Killer: Mesoporous Polysaccharide Confined Silver Nanoparticles for Antibacterial Applications

    Get PDF
    Silver nanoparticles (AgNP) confined within porous starch have been prepared in a simple, green and efficient manner, utilising the nanoporous structure of predominantly mesoporous starch (MS) to act as nanoparticle stabiliser, support and reducing surface. MS/AgNP materials present high surface areas (SBET > 150 m2 g−1) and mesopore volumes (Vmeso > 0.45 cm3 g−1). The interaction of the AgNP precursor and forming nanoparticle nuclei with the mesoporous domains of the porous polysaccharide, direct porosity to increasingly narrower and more defined pore size distributions, indicative of a degree of cooperative assembly. Transmission electron microscopy images indicated the presence of spherical AgNP of a size reflective of the porous polysaccharide mesopore diameter (e.g., 5–25 nm), whilst XPS analysis confirmed the metallic Ag0 state. Materials were prepared at relatively low Ag loadings (<0.18 mmol g−1), demonstrating excellent antimicrobial activity in solid and liquid phase testing against Gram negative (E. coli) and positive (S. aureus) model bacteria. The resulting materials are biocompatible and present a useful solid porous carbohydrate-based polymer vehicle to control the AgNP size regime and facilitate transference to a biological environment
    • 

    corecore