9 research outputs found

    Understanding the causes of breast cancer treatment delays at a teaching hospital in Ghana

    Get PDF
    Poor outcomes for breast cancer in Ghana have been attributed to late presentation of symptoms at biomedical facilities. This study explored factors accounting for delays in initiation of breast cancer treatment at the Korle-Bu Teaching Hospital in Accra. Focus group discussions were conducted with 20 women with breast cancer. A theory-driven thematic analysis identified three multilevel factors influencing treatment seeking delays: (1) patient (e.g. misinterpretation of symptoms, fear), (2) healthcare provider (e.g. negative attitudes) and (3) health systems (e.g. shortage of medicines). Addressing treatment delays will require multilevel interventions, including culturally congruent education, psychosocial counselling/support and strengthening health systems

    Atrial cardiomyocyte calcium signalling

    Get PDF
    Whereas Ca2+ signalling in ventricular cardiomyocytes is well described, much less is known regarding the Ca2+ signals within atrial cells. This is surprising given that atrial cardiomyocytes make an important contribution to the refilling of ventricles with blood, which enhances the subsequent ejection of blood from the heart. The dependence of cardiac function on the contribution of atria becomes increasingly important with age and exercise. Disruption of the rhythmic beating of atrial cardiomyocytes can lead to life-threatening conditions such as atrial fibrillation. Atrial and ventricular myocytes have many structural and functional similarities. However, one key structural difference, the lack of transverse tubules ("T-tubules") in atrial myocytes, make these two cell types display vastly different calcium patterns in response to electrical excitation. The lack of T-tubules in atrial myocytes means that depolarisation provokes calcium signals that originate around the periphery of the cells. Under resting conditions, such Ca2+ signals do not propagate towards the centre of the atrial cells and so do not fully engage the contractile machinery. Consequently, contraction of atrial myocytes under resting conditions is modest. However, when atrial myocytes are stimulated with a positive inotropic agonist, such as isoproterenol, the peripheral Ca2+ signals trigger a global wave of Ca2+ that propagates in a centripetal manner into the cells. Enhanced centripetal movement of Ca2+ in atrial myocytes leads to increased contraction and a more substantial contribution to blood pumping

    Microdomain–specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling

    No full text
    corecore