69 research outputs found
Electrical controlled rheology of a suspension of weakly conducting particles in dielectric liquid
The properties of suspensions of fine particles in dielectric liquid
(electrorheological fluids) subjected to an electric field lead to a drastic
change of the apparent viscosity of the fluid. For high applied fields (~ 3-5
kV/mm) the suspension congeals to a solid gel (particles fibrillate span the
electrode gap) having a finite yield stress. For moderate fields the viscosity
of the suspension is continuously controlled by the electric field strength. We
have roposed that in DC voltage the field distribution in the solid (particles)
and liquid phases of the suspension and so the attractive induced forces
between particles and the yield stress of the suspension are controlled by the
conductivities of the both materials. In this paper we report investigation and
results obtained with nanoelectrorheological suspensions: synthesis of coated
nanoparticles (size ~ 50 to 600 nm, materials Gd2O3:Tb, SiOx...), preparation
of ER fluids (nanoparticles mixed in silicone oil), electrical and rheological
characterization of the ER fluids. We also propose a possible explanation of
the enhanced ER effect (giant ER fluids) taking into account the combined
effects of the (nano)size of the particles, the Van der Waals forces between
particles in contact and the electrostatic pressure in a very thin layer of
insulating liquid.Comment: Article pour la conf\'{e}rence sur les charges d'espaces (CSC
6\`{e}me \'{e}dition) qui s'est d\'{e}roul\'{e}e \`{a} Tours du 3 au 7
juillet 2006. 6page
Unconventional Uses of Microcantilevers as Chemical Sensors in Gas and Liquid Media
The use of microcantilevers as (bio)chemical sensors usually involves the application of a chemically sensitive layer. The coated device operates either in a static bending regime or in a dynamic flexural mode. While some of these coated devices may be operated successfully in both the static and the dynamic modes, others may suffer from certain shortcomings depending on the type of coating, the medium of operation and the sensing application. Such shortcomings include lack of selectivity and reversibility of the sensitive coating and a reduced quality factor due to the surrounding medium. In particular, the performance of microcantilevers excited in their standard out-of-plane dynamic mode drastically decreases in viscous liquid media. Moreover, the responses of coated cantilevers operating in the static bending mode are often difficult to interpret. To resolve these performance issues, the following emerging unconventional uses of microcantilevers are reviewed in this paper: (1) dynamic-mode operation without using a sensitive coating, (2) the use of in-plane vibration modes (both flexural and longitudinal) in liquid media, and (3) incorporation of viscoelastic effects in the coatings in the static mode of operation. The advantages and drawbacks of these atypical uses of microcantilevers for chemical sensing in gas and liquid environments are discussed
Unconventional Uses of Cantilevers for Chemical Sensing in Gas and Liquid Environments
Microcantilevers used as (bio)chemical sensors are usually coated with a chemically sensitive layer. The coated devices operate either in a static bending regime or in a dynamic flexural mode. While the coated devices operate generally well in both the static and dynamic mode, they do suffer from certain shortcomings depending on the medium of operation and the application, including lack of selectivity and of reversibility of the sensitive coating and a reduced quality factor due to the surrounding medium. In particular, the performance of microcantilevers excited in their standard out-of-plane dynamic mode drastically decreases in viscous liquid media. Moreover, the responses of coated cantilevers operating in the static bending mode are often difficult to interpret. To resolve those performance issues, unconventional uses of microcantilever are reviewed in this paper, which consist of the use of the dynamic mode without sensitive coating, the use of in-plane (flexural and longitudinal) vibration modes in liquid media, and fully accounting for the viscoelastic effects of the coatings in the static mode of operation. The advantages and drawbacks of these unconventional uses of microcantilevers for chemical sensing in gas and liquid environments are discussed
DRACULA2 is a dynamic nucleoporin with a role in regulating the shade avoidance syndrome in Arabidopsis
Altres ajuts: C.T. received a Marie Curie IEF postdoctoral contract funded by the European Commission.I.R.-V. received initiallyan FPIfellowship from the SpanishMINECO and later a Beatriu de Pinós contract from AGAUR. - Our research is supported by grants from Generalitat Valenciana [PROMETEO/2009/112, PROMETEOII/2014/006] to M.R.P. and J.L.M.When plants grow in close proximity basic resources such as light can become limiting. Under such conditions plants respond to anticipate and/or adapt to the light shortage, a process known as the shade avoidance syndrome (SAS). Following genetic screening using a shade-responsive luciferase reporter line (PHYB:LUC), we identified DRACULA2 (DRA2), which encodes an Arabidopsis homolog of mammalian nucleoporin 98, a component of the nuclear pore complex (NPC). DRA2, together with other nucleoporins, participates positively in the control of the hypocotyl elongation response to plant proximity, a role that can be considered dependent on the nucleocytoplasmic transport of macromolecules (i.e. is transport dependent). In addition, our results reveal a specific role for DRA2 in controlling shade-induced gene expression. We suggest that this novel regulatory role of DRA2 is transport independent and that it might rely on its dynamic localization within and outside of the NPC. These results provide mechanistic insights in to how SAS responses are rapidly established by light conditions. They also indicate that nucleoporins have an active role in plant signaling
Root ABA signalling in salinized tomato
[SPA] Con el fin de comprender la influencia de la fitohormona ácido abscísico (ABA) en la adaptación al riego salino, dos líneas transgénicas independientes de tomate (Solanum lycopersicum L.), sp12 y sp5, que sobreexpresan constitutivamente el gen NCED1 (codifica para la enzima que cataliza un paso limitante en la biosíntesis de ABA) y la variedad silvestre Ailsa Craig, se han estudiado en experimentos o bien i) como planta entera o ii) como portainjerto bajo condiciones control y de estrés salino. Aunque la expresión constitutiva de NCED disminuye el crecimiento bajo condiciones control, minimiza los efectos producidos por la sal (planta completa) y mejora significativamente el crecimiento cuando se usa como portainjerto. El análisis de la savia xilemática de raíz mostró que los fenotipos resultantes bajo las diferentes condiciones de cultivo eran difíciles de explicar en términos de sobreproducción de ABA. Para intentar explicar estos resultados se llevó a cabo un análisis de expresión de un conjunto de genes relacionados con hormonas y estrés mediante PCR cuantitativa, así como un estudio transcriptómico mediante microarrays en la raíz. Los resultados sugieren que la sobreexpresión de NCED parece alterar diversas rutas de señalización, derivando en una respuesta adaptativa al estrés que podría ayudar a explicar los fenotipos observados.
[ENG] With the aim of better understanding the influence of the plan hormone abscisic acid (ABA) in adaptation to saline irrigation, two independent transgenic tomato (Solanum lycopersicum L.) lines, sp12 and sp5, overexpressing constitutively NCED1 (the enzyme that catalyzes a key rate-limiting step in ABA biosynthesis) and the wild type Ailsa Craig, have been studied in experiments either i) as whole plants or ii) as rootstocks under control and salinity conditions. While NCED overexpression penalizes growth under control conditions, it minimized the effect of salinity (whole plants) or significantly improved plant growth and yield when used as rootstocks. The analysis of the root xylem sap revealed that the phenotypes resulting under the different conditions were difficult to explain in terms of ABA overproduction. With the aim of explaining these results, the expression of a set of hormone and stress associated genes (analysed by real time PCR) as well as a transcriptomic analysis (by using one-color microarray) were performed in roots. The results suggest that NCED overexpression seems to alter several signalling pathways leading to stress adaptive responses that could help to explain the observed phenotypes.The authors thank Andrew J. Thompson from Cranfield University, the NCED seeds set. This work was supported by CICYT-FEDER (project AGL2011-27996) and European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289365(ROOTOPOWER project).. -2010-5 European Union)
ABA-overproduction response under salinity
[SPA] Con el fin de comprender la influencia de la fitohormona ácido abscísico (ABA) en la adaptación al riego salino, dos líneas transgénicas independientes de tomate (Solanum lycopersicum L.), sp12 y sp5, que sobreexpresan constitutivamente el gen NCED1 (codifica para la enzima que cataliza un paso limitante en la biosíntesis de ABA) y la variedad silvestre Ailsa Craig, se han estudiado en experimentos o bien i) como planta entera o ii) como portainjerto bajo condiciones control y de estrés salino. Aunque la expresión constitutiva de NCED disminuye el crecimiento bajo condiciones control, minimiza los efectos producidos por la sal (planta completa) y mejora significativamente el crecimiento cuando se usa como portainjerto. El análisis de la savia xilemática de raíz mostró que los fenotipos resultantes bajo las diferentes condiciones de cultivo eran difíciles de explicar en términos de sobreproducción de ABA. Para intentar explicar estos resultados se llevó a cabo un análisis de expresión de un conjunto de genes relacionados con hormonas y estrés mediante PCR cuantitativa, así como un estudio transcriptómico mediante microarrays en la raíz. Los resultados sugieren que la sobreexpresión de NCED parece alterar diversas rutas de señalización, derivando en una respuesta adaptativa al estrés que podría ayudar a explicar los fenotipos observados.
[ENG] With the aim of better understanding the influence of the plan hormone abscisic acid (ABA) in adaptation to saline irrigation, two independent transgenic tomato (Solanum lycopersicum L.) lines, sp12 and sp5, overexpressing constitutively NCED1 (the enzyme that catalyzes a key rate-limiting step in ABA biosynthesis) and the wild type Ailsa Craig, have been studied in experiments either i) as whole plants or ii) as rootstocks under control and salinity conditions. While NCED overexpression penalizes growth under control conditions, it minimized the effect of salinity (whole plants) or significantly improved plant growth and yield when used as rootstocks. The analysis of the root xylem sap revealed that the phenotypes resulting under the different conditions were difficult to explain in terms of ABA overproduction. With the aim of explaining these results, the expression of a set of hormone and stress associated genes (analysed by real time PCR) as well as a transcriptomic analysis (by using one-color microarray) were performed in roots. The results suggest that NCED overexpression seems to alter several signalling pathways leading to stress adaptive responses that could help to explain the observed phenotypes.The authors thank Andrew J. Thompson from Cranfield University, the NCED seeds set. This work was supported by CICYT-FEDER (project AGL2011-27996) and European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289365(ROOTOPOWER project)
Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements
We report new constraints on extra-dimensional models and other physics
beyond the Standard Model based on measurements of the Casimir force between
two dissimilar metals for separations in the range 0.2--1.2 m. The Casimir
force between an Au-coated sphere and a Cu-coated plate of a
microelectromechanical torsional oscillator was measured statically with an
absolute error of 0.3 pN. In addition, the Casimir pressure between two
parallel plates was determined dynamically with an absolute error of mPa. Within the limits of experimental and theoretical errors, the results
are in agreement with a theory that takes into account the finite conductivity
and roughness of the two metals. The level of agreement between experiment and
theory was then used to set limits on the predictions of extra-dimensional
physics and thermal quantum field theory. It is shown that two theoretical
approaches to the thermal Casimir force which predict effects linear in
temperture are ruled out by these experiments. Finally, constraints on Yukawa
corrections to Newton's law of gravity are strengthened by more than an order
of magnitude in the range 56 nm to 330 nm.Comment: Revtex 4, 35 pages, 14 figures in .gif format, accepted for
publication in Phys. Rev.
Memoria de la Red de tutores del Programa de Acción Tutorial de la Facultad de Económicas (PATEC)
En el presente curso 2013-2014 el Programa de Acción Tutorial en la Facultad de Ciencias Económicas y Empresariales cumple su novena edición. En el curso 2007-2008, con el objetivo de que el Programa de Acción Tutorial fuera considerado una herramienta dirigida a los alumnos del Centro con identidad propia, pasó a llamarse Programa de Acción Tutorial de Económicas (PATEC) pues coloquialmente al Centro se le identifica con la Facultad de Económicas. Desde entonces, el Programa se ha ido consolidando año a año en la Facultad y son muchas las fortalezas que lo han convertido en un programa con un gran potencial. No obstante, existen ciertas debilidades que se repiten cada año a las que se ha tratado de dar respuesta en las distintas ediciones. El objetivo de la presente comunicación es dar a conocer la evolución del PATEC desde el curso 2007-2008 hasta la actualidad así como las acciones que se han llevado a cabo para subsanar las dificultades encontradas
Surface Plasmon Resonance Reveals a Different Pattern of Proinsulin Autoantibodies Concentration and Affinity in Diabetic Patients
Type 1 diabetes mellitus (DM) is characterized by autoimmune aggression against pancreatic beta cells resulting in absolute deficiency of insulin secretion. The first detectable sign of emerging autoimmunity during the preclinical asymptomatic period is the appearance of diabetes-related autoantibodies. In children at risk for type 1 DM, high-affinity Insulin autoantibodies reactive to proinsulin, are associated with diabetes risk. Autoantibodies are usually measured by radioligand binding assay (RBA) that provides quasi-quantitative values reflecting potency (product between concentration and affinity) of specific autoantibodies. Aiming to improve the characterization of the specific humoral immune response, we selected surface plasmon resonance (SPR) as an alternative method to measure proinsulin autoantibodies (PAA). This novel technology has allowed real time detection of antibodies interaction and kinetic analysis. Herein, we have employed SPR to characterize the PAA present in sera from 28 childhood-onset (mean age 8.31±4.20) and 23 adult-onset diabetic patients (≥65 years old, BMI<30) in terms of concentration and affinity. When evaluating comparatively samples from both groups, childhood-onset diabetic patients presented lower PAA concentrations and higher affinities (median 67.12×10−9 M and 3.50×107 M−1, respectively) than the adults (median 167.4×10−9 M and 0.84×107 M−1, respectively). These results are consistent with those from the reference method RBA (Standard Deviation score median 9.49 for childhood-onset group and 5.04 for adult-onset group) where the binding can be directly related to the intrinsic affinity of the antibody, suggesting that there is a different etiopathogenic pathway between both types of clinical presentation of the disease. This technology has shown to be a useful tool for the characterization of PAAs parameters as an alternative to radioimmunoassay, with high versatility and reproducibility associated to low occupational and environmental risk. However, this technology is not eligible for routine marker screening, but this is a powerful technique for a fine description of the thermodynamic parameters of antigen-antibody interaction
- …