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Abstract: 

The use of microcantilevers as (bio)chemical sensors usually involves the 

application of a chemically sensitive layer. The coated device operates either 

in a static bending regime or in a dynamic flexural mode. While some of these 

coated devices may be operated successfully in both the static and the 

dynamic modes, others may suffer from certain shortcomings depending on 

the type of coating, the medium of operation and the sensing application. 

Such shortcomings include lack of selectivity and reversibility of the sensitive 

coating and a reduced quality factor due to the surrounding medium. In 

particular, the performance of microcantilevers excited in their standard out-

of-plane dynamic mode drastically decreases in viscous liquid media. 

Moreover, the responses of coated cantilevers operating in the static bending 

mode are often difficult to interpret. To resolve these performance issues, the 

following emerging unconventional uses of microcantilevers are reviewed in 

this paper: (1) dynamic-mode operation without using a sensitive coating, (2) 

the use of in-plane vibration modes (both flexural and longitudinal) in liquid 

media, and (3) incorporation of viscoelastic effects in the coatings in the 

static mode of operation. The advantages and drawbacks of these atypical 

uses of microcantilevers for chemical sensing in gas and liquid environments 

are discussed.  

Keywords: Cantilever, Chemical detection, Resonant sensor, In-plane mode, 

Viscoelasticity, Static mode. 

1. Introduction 

In recent years, interest in microcantilever-based chemical and 

bio-chemical sensing systems has risen due to their projected high 

sensitivity [1], [2], [3], [4] and [5]. The large ratio of surface area to 
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volume makes the microcantilever extremely sensitive to surface 

processes. For (bio)chemical detection, the microcantilever is usually 

coated with a (bio)chemically sensitive layer that aims to selectively 

sorb the analyte or molecule of interest. The sorbed substances can 

then be detected by monitoring either the resonant frequency shift 

(dynamic mode) or the quasi-static deflection (static mode). A simple 

way to explain the basic principle of such sensors is to say that in the 

case of dynamic mode operation, the change in mass associated with 

the sorption of analytes into the sensitive coating causes a shift in 

resonant frequency, which may be correlated to the ambient 

concentration of the target substance, while for static-mode operation, 

the sorption of analyte causes a cantilever deflection that is induced by 

the tendency of the sensitive coating to expand (or contract) upon 

analyte sorption (modification of strain and stress in the coating). 

However, the behavior of such cantilevers may actually be much more 

complicated as illustrated in Fig. 1. 

As illustrated in Fig. 1 and as noted in the previous paragraph, 

the predominant effect in the dynamic mode is the mass modification, 

while in the static mode the stress and strain modification; however, 

secondary effects may include static deflection due to sorbed mass and 

frequency shifts due to analyte-induced coating stress/strain. Another 

effect which is not necessarily negligible is the effect of the state of the 

surrounding medium on the coating sorption properties (e.g., fluid 

temperature on polymer partition coefficient) or on the static or 

dynamic response of the microcantilever (e.g., “thermal drift” in the 

output signal due to Young's modulus temperature dependence). 

While such cantilever-based sensors generally operate relatively 

well, they have shortcomings depending on the type of coating, the 

medium of operation and the application. The main performance issues 

can be summarized as follows: 

          • Drawbacks due to the sensitive coating: In addition to being 

subjected to environmental effects including temperature, 

humidity and aging effects, most chemically sensitive 

coatings, often polymers, only show partial selectivity to 

various analytes. Ideal selectivity is often achieved at the 

expense of reversibility. Moreover, the limited long-term 
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stability of the viscoelastic coatings and the resulting aging 

affect the reliability of the sensor. 

          • Drawbacks of the commonly used flexural out-of-plane 

dynamic mode in liquid media: Dynamically excited 

microcantilevers are well suited for operation in low-viscosity 

media such as air. Their usefulness as a sensing platform is 

limited when operating in viscous liquid media. This is due to 

the large decrease in the device's quality factor caused by the 

additional viscous losses in the fluid. While the viscous 

damping reduces the quality factor the effective displaced 

fluid mass causes a significant decrease in the resonant 

frequency. The result is a decrease in the device sensitivity as 

well as an increase in the system's susceptibility to frequency 

noise, thus raising the sensor's detection limit. It is noted that 

the sensitivity of the sensors in the dynamic mode increases 

with the resonant frequency, whereas the quality factor Q of 

the resonance mode influences the sensor resolution. 

• Drawbacks due to the interpretation of the static-mode 

responses: In static-mode operation, polymer-coated 

microcantilevers may exhibit either a monotonic transient 

response or a response exhibiting an overshoot [6]. As the 

stresses in the cantilever coated with a viscoelastic material 

may depend on time, the coated cantilever's response 

(bending or deflection) will therefore exhibit more complex 

behaviors. Such complexities in the sensor response make it 

difficult to easily interpret the measurements, analyze and 

predict the sensor's response, and perform signal processing 

for rapid and error-free detection of chemical analytes. 

In the present paper, we will review unconventional uses of 

microcantilevers as chemical sensors to solve some of the performance 

issues and avoid or minimize the associated drawbacks. To eliminate 

problems associated with the sensitive coatings, an alternative method 

to detect and quantify chemical species without the use of a sensitive 

coating will be presented (Section 2). To resolve the drawbacks 

associated with the commonly used out-of-plane flexural dynamic 

mode in viscous liquid media, the characteristics of alternative 

vibrating modes, such as the in-plane (flexural and longitudinal) 
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vibrating modes, will be described (Section 3). Finally, an 

interpretation of the static-mode cantilever response taking into 

account the viscoelasticity of the sensitive coating will be introduced in 

Section 4. 

Notation 

The cantilever geometry is shown in Fig. 2a and the actuation 

and deflection in Fig. 2b. 

The geometry of the cantilever is defined by the width b, 

thickness h, and length L. Coordinate x is measured along the beam 

length. The actuation force F and the resulting deflection w occur at 

the angular frequency ω. The properties of the cantilever material are 

the Young's modulus E and the beam mass density ρ. The fluid (gas or 

liquid) properties are defined as ρf, the fluid mass density, and η, the 

fluid viscosity. 

2. Uncoated microcantilever-based chemical 

sensors operating in dynamic mode 

2.1. Basic equations for dynamic mode operation 

When a microcantilever vibrates in a viscous fluid (gas or 

liquid), the fluid offers resistance to the motion. The force per unit 

length, Ffluid, which is the consequence of all normal and tangential 

stresses (hydrodynamic pressure and viscous shear) exerted by the 

fluid on all the surfaces of the cantilever, can be written in the 

frequency domain (underlined notation) as [7]: 

        (1) 

where x is the longitudinal coordinate, ω   is the radial 

frequency of the vibration, 𝑤(ω,x) is the microcantilever deflection, 

and 𝑔1 and𝑔2  are functions specific to the fluid properties and the 

microcantilever cross-sectional geometry. They may be interpreted, 

respectively, as the distributed damping coefficient of the fluid and the 

distributed effective fluid mass. In general, these quantities may be x-

dependent; however, in what follows they will be assumed uniform in 
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x as this assumption has been shown to be sufficiently accurate for 

modeling microcantilever flexural vibrations in viscous fluids (e.g., 

[8]). 

The fluid effects (viscous and inertial) influence the dynamic 

response of the beam, in particular, the resonant frequency fr and the 

quality factor associated with viscous losses, Qvisc, as [8] and [9]: 

      (2) 

 

             (3) 

 

where f0,vac is the undamped natural frequency of the 

microcantilever in vacuum, Q is the total quality factor of the 

cantilever/fluid system (incorporating all losses), m is the 

microcantilever mass and L is the microcantilever length. 

The above equations illustrate the fact that in the general case 

of dynamic mode operation of a microcantilever, the resonant 

frequency depends on the fluid properties via the terms 𝑔1 and 𝑔2. 

Such dependency can be used, in some cases, to characterize the 

fluid, thus eliminating the need for a chemically sensitive coating. 

2.2. Gas detection in binary mixture 

Using the previous equations, analytical expressions for the 

relative frequency shift due to small changes in both mass density and 

viscosity of the fluid can be obtained. In the case of different binary 

mixtures (He/N2, CO2/N2 and H2/N2), it has been shown that the 

predominant effect for the change in the microcantilever resonant 
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frequency is due to the gas mass density variation. The sensitivity to 

mass density can be approximated by [10] 

            (4) 

 

From Eq. (4) one may conclude that the relative frequency shift 

due to the mass density variation of the gas increases with the ratio of 

the microcantilever width to the microcantilever thickness. Examples 

for the detection of hydrogen in nitrogen and carbon dioxide in 

nitrogen using silicon cantilevers with electromagnetic actuation and 

piezoresistive measurements are presented in Fig. 3. The silicon 

cantilever has a length of 2 mm, a width of 400 μm and a thickness of 

15 μm. The resonance frequency of the uncoated sensor is 

approximately 5 kHz. 

As predicted by Eq. (4), due to the fact that hydrogen is lighter 

than nitrogen, the resonant frequency increases with the hydrogen 

concentration, whereas it decreases in the case of carbon dioxide 

detection because this gas is heaver than nitrogen. 

In order to estimate the limit of detection with this cantilever in 

the case of hydrogen detection in nitrogen, measurements with 

smaller hydrogen concentrations have been conducted (Fig. 4). It can 

be seen that, without any signal processing, the noise in the resonant 

frequency measurement is approximately 2 mHz and that the 

detection of 200 ppm of hydrogen is possible. 

Compared to classical resonant microcantilever-based chemical 

sensors with sensitive coatings, the uncoated microsensors exhibit 

shorter response times because there is no analyte sorption into the 

coating affecting the sensor response. Moreover, the absence of the 

sensitive coating leads to a more reliable and reversible behavior 

because there is no significant absorption and desorption 

phenomenon. The above results indicate that uncoated microsensors 

may serve as viable devices for the detection of specific concentrations 

of one gas in a binary mixture. The sensitivity and resolution of such 

http://dx.doi.org/10.1016/j.snb.2011.02.050
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0925400511001717#bib0050
http://www.sciencedirect.com/science/article/pii/S0925400511001717#eq0020
http://www.sciencedirect.com/science/article/pii/S0925400511001717#fig0015
http://www.sciencedirect.com/science/article/pii/S0925400511001717#eq0020
http://www.sciencedirect.com/science/article/pii/S0925400511001717#fig0020


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Sensors and Actuators B: Chemical, Vol. 170 (July 2012): pg. 115-121. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

8 

 

sensors will be larger for those cases in which the difference between 

the mass densities of the two gases is higher. The major drawback of 

such sensors is that there is no intrinsic selectivity; thus, these 

sensors can only be used for specific applications such as when 

monitoring environments in which it is known that only one gas 

concentration can vary while the relative concentrations of the other 

gases remain fixed. 

3. In-plane vibration modes in liquid media 

From Eq. (2), it can be seen that the decrease of the resonant 

frequency when the microcantilever is immersed in a fluid is 

essentially due to the mass effect 𝑔2; this effect can be minimized if 

the term 𝑔2 is small in liquid. On the other hand, the strong decrease 

in the quality factor in liquid is due to the stronger influence of the 

viscous term 𝑔1 compared to the influence of the displaced fluid mass 

(term due to 𝑔2) in Eq. (3). 

In order to limit the decrease of both the resonant frequency 

and the quality factor upon immersion in liquid media, alternative 

vibration modes that essentially shear the surrounding fluid rather 

than exerting normal stress on it have been studied and tested. In 

particular, two in-plane vibration modes (lateral flexural mode and 

elongation mode) (Fig. 5) have been theoretically studied 

[11] and [12] in order to better understand the “intuitive” advantages 

offered by the in-plane mode of microcantilever-based sensors over 

their out-of-plane counterparts, as well as to quantify these 

advantages. Example analysis and measurements of the resonant 

frequency and quality factor associated with these two unconventional 

modes are presented in what follows. 

3.1. In-plane (lateral) flexural mode 

Exciting the microcantilever in the in-plane flexural vibration 

mode (or lateral vibration) rather than the out-of-plane flexural mode 

would reduce the amount of fluid resistance (combined effects of fluid-

related inertial and viscous forces), which could potentially improve 

the sensitivity and limit of detection of microcantilever-based chemical 

sensors. The characteristics of the in-plane flexural mode can be 
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obtained by evaluating the hydrodynamic forces (𝑔1 and 𝑔2) acting on 

a laterally vibrating microcantilever. 

A first modeling approach consists of considering that the 

displacement of the fluid is the same as in the case of an infinite 

vibrating plane. Then the hydrodynamic force acts only on the two 

larger surfaces of the cantilever and the expressions of 𝑔1 and 𝑔2 are 

[13] and [14]: 

        (5) 

Modeling the fluid resistance using Eq. (5) corresponds to the 

limiting case of high Reynolds's number (high frequency), i.e., 

Re → ∞, and thin microcantilevers vibrating in the lateral flexural 

mode, i.e., cross-sectional aspect ratio h/b → 0. This type of fluid 

resistance is described as “Stokes resistance” and leads to simple 

analytical expressions for the quality factor due to viscous fluid losses 

and the relative frequency change due to immersion in a viscous fluid 

[13] and [14]. 

A more complete modeling approach consists of taking into 

account both the shear forces acting on the two larger surfaces and 

the pressure forces acting on the two other surfaces (Fig. 6). Each 

force is composed of two terms: one proportional to velocity and one 

proportional to acceleration. Then it is also theoretically possible to 

extract the two terms 𝑔1 and 𝑔2. But due to edge effects, as shown in 

Fig. 6, each force is not uniformly distributed. Recently, finite-element 

results combined with semi-analytical models [11] and [15] have 

appeared in the literature to provide more accuracy results for the 

hydrodynamic force. These studies show that 𝑔1 and 𝑔2 are functions 

of both Reynolds number (dimensionless frequency involving fluid 

properties) and cantilever aspect ratio (h/b). Obtaining the 

hydrodynamic forces allows for the resonant frequency and Q-factor to 

be investigated as functions of both beam geometry and medium 

properties [11]. Trends in these characteristics can be used to 

optimize device geometry and maximize the frequency stability in 

sensing applications. 

http://dx.doi.org/10.1016/j.snb.2011.02.050
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0925400511001717#bib0065
http://www.sciencedirect.com/science/article/pii/S0925400511001717#bib0070
http://www.sciencedirect.com/science/article/pii/S0925400511001717#eq0025
http://www.sciencedirect.com/science/article/pii/S0925400511001717#bib0065
http://www.sciencedirect.com/science/article/pii/S0925400511001717#bib0070
http://www.sciencedirect.com/science/article/pii/S0925400511001717#fig0030
http://www.sciencedirect.com/science/article/pii/S0925400511001717#fig0030
http://www.sciencedirect.com/science/article/pii/S0925400511001717#bib0055
http://www.sciencedirect.com/science/article/pii/S0925400511001717#bib0075
http://www.sciencedirect.com/science/article/pii/S0925400511001717#bib0055


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Sensors and Actuators B: Chemical, Vol. 170 (July 2012): pg. 115-121. DOI. This article is © Elsevier and permission has 
been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article 
to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

10 

 

Several cantilevers with widths of 45, 60, 75 and 90 μm, lengths 

of 200, 400, 600, 800, 1000 μm and silicon thicknesses of 8 and 

12 μm, corresponding to in-plane resonant frequencies up to about 

3 MHz, have been characterized in air and water. The modeling of the 

fluid interaction terms, 𝑔1 and 𝑔2, according to Eq. (5) for the lateral 

mode result in the resonant frequency being proportional to b/L2 

(where b is the cantilever width and L   is the cantilever length), the 

relative resonant frequency shift from air to water being proportional 

to L/(h√𝑏) and the quality factor (in water) being proportional to h√𝑏/L 

[13] and [14]. The results of a simple, closed-form analytical 

expression for Q gives excellent quantitative agreement for the quality 

factor in water for aspect ratios up to h/b = 0.2 (see, e.g., Fig. 7a) 

and a reasonable upper-bound estimate for thicker beams 

[13] and [14]. In addition, the analytical formula for resonant 

frequency in fluid [13] matches the trend exhibited by measurements 

made on the different cantilever geometries when operated in water ( 

Fig. 7b). While the simple theory predicts qualitatively certain aspects 

of the behavior of the relative frequency drop from air to water (see, 

e.g., the slope in Fig. 7c), the quantitative results for the relative 

change in frequency significantly underestimate the data due to the 

neglected pressure effect on the smaller faces (i.e., the beam 

thickness effect). Therefore, the analytical result for the fluid-induced 

relative frequency change [13] should only be used as a general guide 

for the first-order dependency of relative frequency drop on beam 

geometry. (An extension of the analytical formula for % frequency 

change that accounts for the pressure effect has been achieved 

recently and will be submitted for publication in the near future.) Other 

interesting features of the experimental data include (1) for the first 

lateral flexural mode the microcantilevers exhibit quality factors in air 

up to 4300 and up to 67 in water (which usually does not exceed 10–

20 in water for out-of-plane modes); (2) the resonant frequencies of 

the in-plane mode are only lowered by 5–10% in water compared to 

the values in air, whereas this reduction is approximately 50% for the 

out-of-plane modes. These two characteristics of the lateral mode 

operation are promising for future detection in liquid media. 

 For the microcantilevers designed and fabricated for operation in 

the lateral flexural vibration mode, thermal excitation and 

piezoresistive detection, both based on the use of diffused resistors, 
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have been chosen as actuating and sensing mechanisms, respectively. 

The design of the actuation resistors and integrated Wheatstone bridge 

allow a more efficient excitation of the in-plane flexural mode than the 

more classical out-of-plane flexural mode [16]. It is noted that, for 

example, at a given driving voltage, the free-end vibration amplitude, 

measured using a Polytec MSA-500 laser vibrometer, is 118 nm at the 

first transverse flexural resonant frequency whereas it is 750 nm for 

the first lateral flexural resonant frequency. 

For dynamically driven microcantilever chemical sensors, the 

limit of detection is usually defined as the analyte mass or 

concentration corresponding to a frequency shift equal to three times 

the frequency noise of the system measurement, (or is defined as 

three times the ratio of the device/system frequency noise to the 

chemical sensitivity). It is difficult to directly measure and compare the 

LOD because of the system noise for various transducers. However, 

when operating in an oscillator configuration, normalizing the chemical 

(mass) sensitivity, the limit of detection is proportional to 3fr/(SmQ) 

[17]. Using this definition with the values of the operating frequencies, 

together with the values of the quality factor and the mass sensitivities 

Sm, one can assess the LOD for each operational mode. For example, 

when vibrating the microcantilever in the lateral direction compared to 

the transverse direction, the quality factor (Q) is larger due to the 

decreased viscous damping and the ratio of the resonant frequency to 

the chemical sensitivity (fr/Sm) is smaller due to the decreased 

effective mass of the system. Furthermore, due to the increased 

resonant frequency and decreased effective mass of the beam/fluid 

system (compared with transverse mode operation), the estimated 

mass sensitivity of a laterally excited microcantilever is found to be 

much larger. For example, the mass sensitivity of a 

200 × 60 × 5.8 μm3 cantilever is found to be roughly two orders of 

magnitude larger in water (4.65 Hz/pg vs. 0.0456 Hz/pg) (and even 

better in more viscous solutions) when laterally excited compared to 

transversely excited. In an oscillator configuration, the reduced 

frequency noise (due to the increased quality factor) and improved 

mass sensitivity are expected to yield much lower limits of detection. 

These improvements in device characteristics indicate that 

microcantilevers excited laterally are more suited for operating in 

media of high viscosities compared to microcantilevers excited 

transversely, and thus will result in a lower minimum detectable mass. 
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Based on measurements made in liquid media with the cantilevers 

presented in this section with various analytes, estimated LODs on the 

order of 100 ppb were determined, which represents roughly an order 

of magnitude improvement in LOD compared to values reported for 

out-of-plane cantilevers in water [18]. 

3.2. In-plane longitudinal mode 

For the same reason as noted in the previous section, the 

longitudinal (axial) mode may be of potential interest for detection in 

liquid media. To assess the characteristics of this mode, self-actuated 

resonant-microcantilevers based on a thick-film piezoelectric layer 

associated with two electrodes have been processed and tested. 

Screen-printed microcantilevers comprising Au/PZT/Au layers are 

partially released from an alumina substrate (Fig. 8) using a sacrificial 

layer process [19]. 

Using an impedance analyzer (HP4194A), frequency spectra 

have been measured for three different cantilever geometries 

(piezoelectric layers of 10 × 2 × 0.075 mm3, 8 × 2 × 0.075 mm3 and 

6 × 1 × 0.075 mm3 coated with 5–10 μm thick symmetrical 

electrodes) in air and in various other fluids with viscosities ranging 

from 1.55 to 300 cP. Even though the quality factor in air is relatively 

low (probably due to internal mechanical losses and piezoelectric 

losses), ranging from 130 to 300, the quality factors in liquid are 

significantly higher compared to those of classical out-of-plane modes; 

the measured total quality factors for the three cantilever geometries 

range from 70 to 107, 41 to 51, and 20 to 22 for the 1.55, 20, and 

300 cP fluids, respectively. The decrease of the resonant frequency of 

the first longitudinal mode from air to dodecane (1.55 cP) is only 1% 

and from air to 300 cP silicone oil is a mere 2.8%. 

As was the case with lateral-mode silicon cantilevers having an 

integrated scheme for actuation and measurement, these thick-film 

piezoelectric cantilevers actuated in the longitudinal mode and utilizing 

impedance measurement are promising in terms of sensitivity and 

limit of detection for (bio)chemical detection in liquid media. 
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4. Static-mode cantilever response: influence of 

the viscoelasticity of polymer coatings 

A static-mode, polymer-coated microcantilever undergoes a 

quasi-static deformation when analyte sorption causes either a change 

in the surface free energy (adsorption) or coating expansion 

(absorption). In either case, it is necessary to have an accurate model 

of the beam's deflection in order to design devices for high sensitivity 

and to analyze or predict the sensor's response. Unlike the elastic 

case, the stresses in the cantilever coated with a viscoelastic material 

will depend on time even if the absorbed analyte concentration 

remains constant. The coated cantilever's transient response will 

therefore exhibit more complex behaviors [20]. The transient response 

in the static mode can be of various shapes when polymeric sensitive 

coatings are used, which include monotonic response and response 

with an overshoot. An analytical solution for predicting deflection and 

stress in a cantilever with viscoelastic coating when the coating is 

subjected to an exponential eigenstrain history (i.e., sorption-induced 

swelling strain) has been developed (Fig. 9) which provides an 

explanation for the different shapes observed in the transient 

responses [21]. 

As shown in Fig. 9, the model considers that the viscoelastic 

material is characterized by its biaxial relaxation modulus which is 

defined by three parameters: the initial biaxial modulus M0, the 

steady-state biaxial modulus M∞ and the relaxation constant time τR. 

The time constant of the swelling strain is denoted by τS and 

corresponds to the diffusion time of the analyte into the coating. Using 

this notation, the analytical expression of the cantilever deflection 

allows one to obtain an “overshoot criterion” for determining if an 

overshoot will occur in the quasi-static beam response. Overshoot is 

predicted ( Fig. 10) to occur if 

            (6) 
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The validation of this analytical model and its limitations has 

been made using finite element modeling [22]. 

Based on the results of the analytical model, an optimization of 

the choice of the mechanical viscoelastic properties of the polymer 

coating (instantaneous and asymptotic biaxial moduli and 

corresponding relaxation time) and of the coating thickness 

(determining the time constant of the chemical sorption into the 

coating and then of the eigenstrain) can be envisaged in order to have 

larger transient deflection and an overshoot whose characteristics 

could possibly be used to perform more rapid chemical detection, 

possibly eliminating the need to wait for the steady state to be 

achieved. The reduction in detection time could be especially large in 

the case of thick coatings and/or polymeric coatings that exhibit slow 

creep/relaxation. 

5. Conclusion 

The limitations of classical microcantilever-based microsensors 

are essentially due to the low selectivity and reliability of the sensitive 

coating, the limitation of the dynamic mode in liquid media, and the 

difficulty in interpreting complex static-mode responses. In the present 

paper, some emerging alternative uses of microcantilevers as chemical 

sensors have been presented. The feasibility of these unconventional 

uses has been confirmed by physical analytical modeling, in addition to 

experimental observations and/or numerical validation. These 

unconventional uses have some advantages (shorter response time, 

better reliability when sensitive coatings are not used, higher quality 

factor and resonant frequency in liquid for in-plane resonant modes 

relative to the classical out-of-plane mode, and higher signal and 

shorter response time utilizing the overshoot phenomenon in the static 

mode). However, these advantages are accompanied by some 

drawbacks, including lack of selectivity when sensitive coatings are not 

employed and the difficulty in determining the viscoelastic properties 

of polymer coatings for static-mode applications. The preliminary 

results are promising, but further measurements and modeling must 

be performed in order to fully realize the benefits that these 

unconventional uses may offer for some applications. 
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Fig. 1. Principle of microcantilever-based sensors for chemical detection: 

dynamic and static modes. 

Fig. 2. a) cantilever geometry, b) Example of actuation force and deflection 
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Fig. 2. a) cantilever geometry, b) Example of actuation force and deflection for an 

out-of-plane flexural mode. 
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Fig. 3. Example of (a) detection of hydrogen in nitrogen and (b) carbon dioxide in 

nitrogen with an uncoated 2000 x 400 x 15 μm3 silicon cantilever 

 

 

Fig. 4. Example of detection of small concentration of hydrogen in nitrogen with an 

uncoated 2000 x 400 x 15 μm3 silicon cantilever 
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Fig. 5. Out-of-plane and in-plane modes. a) transverse mode (out-of-plane) 

b) lateral bending mode (in-plane), c) longitudinal (elongation) mode 

(in-plane) 

 

 

 

Fig. 6. Hydrodynamic forces acting on the cantilever in lateral bending mode. (Only 

lateral forces indicated.) 
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Fig. 7. Results of analytical model compared with experimental results for 

microcantilevers in lateral (in-plane) flexure [13]: (a) quality factor in 

water, (b) resonant frequency in water, (c) relative frequency decrease 

from air to water. 
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Fig. 8. Example of screen printed piezoelectric cantilever designed for axial-mode 

operation [12] 

 

 

 

Fig. 9. Modeling of the static mode. a) Cantilever profile, b) material properties: 

biaxial moduli (biaxial stress corresponding to a unit step-function biaxial 

strain) of viscoelastic coating (pink curve) and elastic base material (blue 

curve) [18]. 
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Fig. 10. Cantilever deflection obtained with the analytical model 
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