16,368 research outputs found

    Comparing Information-Theoretic Measures of Complexity in Boltzmann Machines

    Get PDF
    In the past three decades, many theoretical measures of complexity have been proposed to help understand complex systems. In this work, for the first time, we place these measures on a level playing field, to explore the qualitative similarities and differences between them, and their shortcomings. Specifically, using the Boltzmann machine architecture (a fully connected recurrent neural network) with uniformly distributed weights as our model of study, we numerically measure how complexity changes as a function of network dynamics and network parameters. We apply an extension of one such information-theoretic measure of complexity to understand incremental Hebbian learning in Hopfield networks, a fully recurrent architecture model of autoassociative memory. In the course of Hebbian learning, the total information flow reflects a natural upward trend in complexity as the network attempts to learn more and more patterns.Comment: 16 pages, 7 figures; Appears in Entropy, Special Issue "Information Geometry II

    Dopamine protects neurons against glutamate-induced excitotoxicity

    Get PDF
    Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma and neurodegenerative disease. Loss of calcium homeostasis is a key mediator of glutamate-induced cell death. The neurotransmitter dopamine (DA) is known to modulate calcium signalling, and here we show that it can do so in response to physiological concentrations of glutamate. Furthermore, DA is able to protect neurons from glutamate-induced cell death at pathological concentrations of glutamate. We demonstrate that DA has a novel role in preventing delayed calcium deregulation in cortical, hippocampal and midbrain neurons. The effect of DA in abolishing glutamate excitotoxicity can be induced by DA receptor agonists, and is abolished by DA receptor antagonists. Our data indicate that the modulation of glutamate excitotoxicity by DA is receptor-mediated. We postulate that DA has a major physiological function as a safety catch to restrict the glutamate-induced calcium signal, and thereby prevent glutamate-induced cell death in the brain

    Ab initio based equation of state of dense water for planetary and exoplanetary modeling

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.As a first step toward a multi-phase equation of state for dense water, we develop a temperature-dependent equation of state for dense water covering the liquid and plasma regimes and extending to the super-ionic and gas regimes. This equation of state covers the complete range of conditions encountered in planetary modeling. We use first principles quantum molecular dynamics simulations and its Thomas-Fermi extension to reach the highest pressures encountered in giant planets several times the size of Jupiter. Using these results, as well as the data available at lower pressures, we obtain a parametrization of the Helmholtz free energy adjusted over this extended temperature and pressure domain. The parametrization ignores the entropy and density jumps at phase boundaries but we show that it is sufficiently accurate to model interior properties of most planets and exoplanets. We produce an equation of state given in analytical form that is readily usable in planetary modeling codes and dynamical simulations {\bf (a fortran implementation can be found at http://www.ioffe.ru/astro/H2O/)}. The EOS produced is valid for the entire density range relevant to planetary modeling, {\bf for densities where quantum effects for the ions can be neglected, and for temperatures below 50,000K. We use this equation of state to calculate the mass-radius relationship of exoplanets up to 5,000M_Earth, explore temperature effects in ocean and wet Earth-like planets, and quantify the influence of the water EOS for the core on the gravitational moments of Jupiter.s. Part of this work was supported by the SNR grant PLANETLAB 12-BS04-0015 and the Programme National de Planetologie (PNP) of CNRS-INSU co-funded by CNES. Funding and support from Paris Sciences et Lettres (PSL) university through the project origins and conditions for the emergence of life is also acknowledged. This work was performed using HPC resources from GENCI- TGCC (Grant 2017- A0030406113

    Entropy Distance: New Quantum Phenomena

    Full text link
    We study a curve of Gibbsian families of complex 3x3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology and information geometry. This research is motivated by a theory of info-max principles, where we contribute by computing first order optimality conditions of the entropy distance.Comment: 34 pages, 5 figure

    A parametric level-set method for partially discrete tomography

    Get PDF
    This paper introduces a parametric level-set method for tomographic reconstruction of partially discrete images. Such images consist of a continuously varying background and an anomaly with a constant (known) grey-value. We represent the geometry of the anomaly using a level-set function, which we represent using radial basis functions. We pose the reconstruction problem as a bi-level optimization problem in terms of the background and coefficients for the level-set function. To constrain the background reconstruction we impose smoothness through Tikhonov regularization. The bi-level optimization problem is solved in an alternating fashion; in each iteration we first reconstruct the background and consequently update the level-set function. We test our method on numerical phantoms and show that we can successfully reconstruct the geometry of the anomaly, even from limited data. On these phantoms, our method outperforms Total Variation reconstruction, DART and P-DART.Comment: Paper submitted to 20th International Conference on Discrete Geometry for Computer Imager

    Preventing leprosy with retrospective active case finding combined with single-dose rifampicin for contacts in a low endemic setting: results of the Leprosy Post-Exposure Prophylaxis program in Cambodia

    Get PDF
    Post-exposure prophylaxis (PEP) with single-dose rifampicin (SDR) reduces the risk of developing leprosy among contacts of leprosy patients. Most evidence for the feasibility of the intervention is from highly endemic settings while low-endemic areas present unique challenges including reduced awareness of the disease among the population and in the health system, and the only sporadic occurrence of cases which together make defining any type of routine process challenging. We complemented the retrospective active case finding (RACF) approach with SDR administration to eligible contacts, and piloted the intervention across 31 operational districts in Cambodia. The aim was to demonstrate the feasibility of improving early case detection and administering SDR in a low endemic setting. The intervention focused on leprosy patients diagnosed since 2011 and was implemented between October 2016 - September 2019. The "drives" approach was employed to trace contacts: a trained team systematically contacted all eligible cases in a district, traced and screened contacts, and administered SDR. A total of 555 index patients were traced by the drive team, and 10,410 contacts in their household and 5 immediate neighbor houses listed. Among these contacts, 72.0% could be screened while most others were absent on the screening day. A total of 33 new leprosy cases were diagnosed and 6189 contacts received SDR (82.6% of the screened contacts). Sixty-one contacts refused SDR administration. We conclude that integrating PEP with SDR in RACF campaigns is feasible, and that this approach is appropriate in low resource and low endemic settings. Over time, evidence on whether or not the approach reduced leprosy transmission in Cambodia, may become clear

    A new method for experimental characterisation of scattered radiation in 64-slice CT scanner

    Get PDF
    PURPOSE: The consummate 64-slice CT scanner that spawns a new generation of non-invasive diagnostic tool, however revolutionary, brings with it the incidental by-product that is scattered radiation. The extended detector aperture capability in the 64-slcie CT scanner allows the effects of scattered radiation to be more pronounced and therefore demands that the magnitude and spatial distribution of scatter component be addressed during the imaging process. To this end, corrective algorithms need to be formulated on a basis of a precise understanding of scatter distribution. Relative to a 64-slice CT scanner, here now a unique solution is based upon dedicated blockers operative within various detector rows, calculating scatter profiles and scatter to primary ratios (SPR). MATERIALS AND METHODS: A single dimension blocker array was installed beneath the collimator, and the extrapolated shadow area on the detectors revealed the scatter radiation after exposure. The experiment was conducted using a 64-slice CT scanner manufactured by GE Healthcare Technologies. RESULTS: Variables such as tube voltage, phantom size and phantom-off centring on the scatter profile and the SPR was measured using the dedicated blocker method introduced above. When tube voltage is increased from 80kVp to 140kVp in a 21.5 cm water phantom, the SPR is found to reduce from 219.9 to 39.9 respectively. CONCLUSION: The method developed within this study is applicable to any measurement and is direct with minimal complexity

    Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra

    Full text link
    We define a theory of Galilean gravity in 2+1 dimensions with cosmological constant as a Chern-Simons gauge theory of the doubly-extended Newton-Hooke group, extending our previous study of classical and quantum gravity in 2+1 dimensions in the Galilean limit. We exhibit an r-matrix which is compatible with our Chern-Simons action (in a sense to be defined) and show that the associated bi-algebra structure of the Newton-Hooke Lie algebra is that of the classical double of the extended Heisenberg algebra. We deduce that, in the quantisation of the theory according to the combinatorial quantisation programme, much of the quantum theory is determined by the quantum double of the extended q-deformed Heisenberg algebra.Comment: 22 page
    corecore