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Abstract. This paper introduces a parametric level-set method for
tomographic reconstruction of partially discrete images. Such images
consist of a continuously varying background and an anomaly with a
constant (known) grey-value. We express the geometry of the anomaly
using a level-set function, which we represent using radial basis func-
tions. We pose the reconstruction problem as a bi-level optimization
problem in terms of the background and coefficients for the level-set func-
tion. To constrain the background reconstruction, we impose smoothness
through Tikhonov regularization. The bi-level optimization problem is
solved in an alternating fashion; in each iteration we first reconstruct
the background and consequently update the level-set function. We test
our method on numerical phantoms and show that we can successfully
reconstruct the geometry of the anomaly, even from limited data. On
these phantoms, our method outperforms Total Variation reconstruc-
tion, DART and P-DART.

Keywords: Discrete tomography · Level-set method · Model splitting ·
Geometric inversion

1 Introduction

The need to reconstruct (quantitative) images of an object from tomographic
measurements appears in many applications. At the heart of many of these appli-
cations is a projection model based on the Radon transform. Characterizing the
object under investigation by a function u(x) with x ∈ D = [0, 1]2, tomographic
measurements are modeled as

pi =
∫

D
u(x)δ(si − n(θi) · x) dx, (1)

where si ∈ [0, 1] denotes the shift, θi ∈ [0, 2π) denotes the angle and n(θ) =
(cos θ, sin θ). The goal is to retrieve u from a number, m, of such measurements
for various shifts and directions.

If the shifts and angles are regularly and densely sampled, the transform can
be inverted directly by Filtered back-projection or Fourier reconstruction [9].
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A common approach for dealing with non-regularly sampled or missing data, is
algebraic reconstruction. Here, we express u in terms of a basis

u(x) =
n∑

j=1

ujb(x − xj),

where b are piece-wise polynomial basis functions and {xj}n
j=1 is a regular (pixel)

grid. This leads to a set of m linear equations in n unknowns

p = Wu,

with wij =
∫

D b(x − xj)δ(si − n(θi) · x) dx. Due to noise in the data or errors
in the projection model the system of equations is typically inconsistent, so
a solution may not exist. Furthermore, there may be many solutions that fit
the observations equally well when the system is underdetermined. A standard
approach to mitigate these issues is to formulate a regularized least-squares
problem

min
u

1
2‖Wu − p‖22 + λ

2 ‖Ru‖22,
where R is the regularization operator with parameter λ balancing the data-
misfit and regularity of the solution. Such a formulation is popular mainly
because very efficient algorithms exist for solving it. Depending on the choice of
R, however, this formulation forces the solution to have certain properties which
may not reflect the truth. For example, setting R to be the discrete Laplace
operator will produce a smooth reconstruction, whereas setting R to be the
identity matrix forces the individual coefficients ui to be small. In many appli-
cations such quadratic regularization terms do not reflect the characteristics of
the object we are reconstructing. For example, if we expect u to be piecewise
constant, we could use a Total Variation regularization term ‖Ru‖1 where R is
a discrete gradient operator [13]. Recently, a lot of progress has been made in
developing efficient algorithms for solving such non-smooth optimization prob-
lems [6]. If the object under investigation is known to consist of only two distinct
materials, the regularization can be formulated in terms of a non-convex con-
straint u ∈ {u0, u1}n. The latter leads to a combinatorial optimization problem,
solutions to which can be approximated using heuristic algorithms [3].

In this paper, we consider tomographic reconstruction of partially discrete
objects that consist of a region of constant density embedded in a continuously
varying background. In this case, neither the quadratic, Total Variation nor non-
convex constraints by themselves are suitable. We therefore propose the following
parametrization

u(x) =
{

u1 if x ∈ Ω,
u0(x) otherwise.

The inverse problem now consists of finding u0(x), u1 and the set Ω. We can sub-
sequently apply suitable regularization to u0 separately. To formulate a tractable
optimization algorithm, we represent the set Ω using a level-set function φ(x)
as follows:

Ω = {x |φ(x) > 0}.
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In the following sections, we assume knowledge of u1 and discuss how to for-
mulate a variational problem to reconstruct Ω and u0 based on a parametric
level-set representation of Ω.

The outline of the paper is as follows. In Sect. 2 we discuss the paramet-
ric level-set method and propose some practical heuristics for choosing various
parameters that occur in the formulation. A joint background-anomaly recon-
struction algorithm for partially discrete tomography is discussed in Sect. 3. The
results on a few moderately complicated numerical phantoms are presented in
Sect. 4. We provide some concluding remarks in Sect. 5.

2 Level-Set Methods

In terms of the level-set function, we can express u as

u(x) = (1 − h(φ(x)))u0(x) + h(φ(x))u1,

where h is the Heaviside function.
Level-set methods have received much attention in geometric inverse prob-

lems, interface tracking, segmentation and shape optimization. In the classical
level-set method, introduced by Sethian and Osher [11], the level-set is evolved
according to the Hamilton-Jacobi equation

∂φ

∂t
+ v|∇φ| = 0,

where φ(x, t) now denotes the level-set function as a time-dependent quantity for
representing the shape and v denotes the normal velocity at the boundary of the
shape. In the inverse-problems setting, the velocity v is often derived from the
gradient of the cost function with respect to the model parameter [5,7]. There
are various numerical issues associated with the numerical solution of level-set
equation, e.g. reinitialization of the level-set. We refer the interested reader to
a seminal paper in level-set methods [11] and its application to computational
tomography [10].

Instead of taking this classical level-set approach, we employ a parametric
level-set approach, first introduced by Aghasi et al. [1]. In this method, the
level-set function is parametrized using radial basis functions (RBF)

φ(x) =
n′∑

j=1

αjΨ(βj‖x − χj‖2),

where Ψ(·) is a radial basis function, {αj}n′
j=1 and {χj}n′

j=1 are the amplitudes and
nodes respectively, and the parameters {βj}n′

j=1 control the widths. Introducing
the kernel matrix A(χ,β) with elements

aij = Ψ(βj‖xi − χj‖2),
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we can now express u on the computational grid {xi}n
i=1 as

u = (1 − h(A(χ,β)α)) � u0 + h(A(χ,β)α)u1, (2)

where h is applied element-wise to the vector A(χ,β)α and � denotes the
element-wise (Hadamard) product. By choosing the parameters (χ,β,α) appro-
priately we can represent any (smooth) shape. To simplify matters and make the
resulting optimization problem more tractable, we consider a fixed regular grid
{χj}n′

j=1 and a fixed width βj ≡ β. In the following we choose β in accordance
with the grid spacing Δχ as β = 1/(ηΔχ), where η corresponds to the width of
the RBF in grid points.

Example. To illustrate the representation of a shape using finitely many radial
basis functions, we consider the green shape shown in Fig. 1(a). Starting from
an initial guess (Fig. 1(a), red) we obtain the coefficients α by solving a non-
linear least-squares problem minα ‖h(Aα)−y‖22, where y ∈ {0, 1}n indicates the
true shape. This leads to the representation shown in Fig. 1(b). With n′ = 196
RBFs, it is possible to reconstruct a smooth shape discretized on a grid with
n = 256 × 256 pixels.

(a) (b)

Fig. 1. Any (sufficiently) smooth level-set can be reconstructed from radial basis func-
tions. (a) The shape to be reconstructed is denoted in green. The initial shape (dash-
dotted line) is generated by some positive RBF coefficients (denoted by red pluses)
near the center and negative coefficients elsewhere (denoted by blue dots). Also shown
is the corresponding initial level-set function. The reconstructed shape denoted with a
dash-dotted line, the sign of the RBF-coefficients as well as the corresponding level-set
function are shown in (b). (Color figure online)

Finally, the discretized reconstruction problem for determining the shape is
now formulated as

min
α

{
f(α) = ‖W [(u11 − u0) � hε(Aα)] − (p − Wu0)‖22

}
, (3)

where hε is a smooth approximation of the Heaviside function. The gradient and
Gauss-Newton Hessian of f(α) are given by

∇f(α) = AT DT
αWT r(α),

HGN (f(α)) = AT DT
αWT WDαA,

(4)
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where the diagonal matrix and residual vectors are given by

Dα = diag((u11 − u0) � h′
ε(Aα)),

r(α) = W [(u11 − u0) � hε(Aα)] − (p − Wu0).

Using a Gauss-Newton method, the level-set parameters are updated as

α(k+1) = α(k) − μk

(
HGN (f(α(k)))

)−1

∇f(α(k)), (5)

where μk is a stepsize chosen to satisfy the weak Wolfe conditions [15] and α(0)

is a given initial estimate of the shape. The weak Wolfe conditions consist of
sufficient decrease and curvature conditions and ensure global convergence to a
local minimum.

From Eq. (4), it can be observed that the ability to update the level-set
parameters depends on two main factors: (1) The difference between u0 and
u1, and (2) the derivative of the Heaviside function. Hence, the support and
smoothness of h′

ε plays a crucial role in the sensitivity. More details on the
choice of hε are discussed in Sect. 2.1.

Example. We demonstrate the parametric level-set method on a (binary) dis-
crete tomography problem. We consider the model described in Fig. 2(a). For a
full-angle case (0 ≤ θ ≤ π) with a large number of samples, Fig. 2(c) shows that
it is possible to accurately reconstruct a complex shape. The model is recon-
structed by iteratively updating α using Eq. (5).

2.1 Approximation to Heaviside Function

The update of the level-set function depends crucially on the choice of the Heav-
iside function. In Eq. (4) we see that h′

ε acts as a windowing function that con-
trols which part of the level-set function is updated. The windowing function
should achieve the following: (i) limit the update to a small region around the
boundary of the shape; (ii) have a uniform amplitude in the boundary region;
and (iii) guarantee a minimum width of the boundary region. Failure to meet
these requirements may result in poor updates for the level-set parameter α and
premature break-down of the algorithm.

Requirement (i) is easily fulfilled as any smooth approximation of the Heav-
iside will have a rapidly decaying derivative. To satisfy the second requirement
we construct the Heaviside function by smoothing the piece-wise linear function
1
2 + x

2ε for |x| ≤ ε. This approximation is shown in Fig. 3 alongside two common
smooth approximations of the Heaviside. We now discuss how we can satisfy the
third requirement, starting with a formal definition of the width of the level-set
boundary layer as shown in Fig. 3(c).

Definition 1. In accordance with the compact approximation of the Heaviside
function with width ε, we define the minimum width of the level-set boundary
layer as Δ = minx0,x1 ‖x0 − x1‖2 such that φ(x0) = 0 and |φ(x1)| = ε.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Parametric level-set method for Discrete tomography problem. (a) True model
(n = 256×256) (b) RBF grid (n′ = 27×27) with initial level-set denoted by green line,
positive and negative RBFs are denoted by red pluses and blue dots respectively (c)
Final level-set denoted by the green line, and the corresponding positive and negative
RBFs (d) Initial level-set function (e) level-set function after 10 iterations (f) final
level-set function after 25 iterations. (Color figure online)

Lemma 1. For any smooth and compact approximation of the Heaviside func-
tion with finite width ε, the width of the level-set boundary layer, Δ, satisfies

Δ ≥ ε/‖∇φ‖∞.

Proof. A Taylor series expansion of φ(x) around x0 for which φ(x0) = 0, we get

φ(x) = (x − x0)T ∇φ(ξ),

with ξ = tx0 + (1 − t)x for some t ∈ [0, 1]. This leads to

|φ(x)| ≤ ‖x − x0‖2 · ‖∇φ(ξ)‖2 ≤ ‖x − x0‖2 · ‖∇φ‖∞.

Choosing x = x1 with |φ(x1)| = ε, we have ‖x1 − x0‖2 ≥ ε/‖∇φ‖∞. Since this
holds for all x0,x1 we obtain the desired result. 	


To ensure a minimum width of the boundary layer, Lemma1 suggest to
choose ε proportional to ‖∇φ‖∞. For computational simplicity, we approximate
this using upper and lower bounds [8] and set:

ε = κ

(
max(φ(x)) − min(φ(x))

Δx

)
= κ

(
max(Aα) − min(Aα)

Δx

)
, (6)

where κ controls the width of level-set boundary in terms of the underlying
computational grid. A small value of κ leads to the narrow boundary while big
value leads a wide boundary.



128 A. Kadu et al.

-1.5 -1 -0.5 0 0.5 1 1.5
x

0

0.2

0.4

0.6

0.8

1

h(
x)

new formulation compact global

-1.5 -1 -0.5 0 0.5 1 1.5
x

0

0.2

0.4

0.6

0.8

1

(x
)

new formulation compact global

(a) (b) (c)

Fig. 3. New formulation for approximating the Heaviside function. The Heaviside func-
tions (a) and corresponding Dirac-Delta functions (b) with ε = 1. Global approximation
is constructed from inverse tangent function ( 1

2
(1+ 2

π
arctan(π x

ε
))), while compact one

is composed of linear and sinusoid functions. (c) level-set boundary (orange region)
around zero level-set denoted by blue line, n represents the normal direction at x0.
(Color figure online)

3 Joint Reconstruction Algorithm

Reconstructing both the shape and the background parameter can be cast as a
bi-level optimization problem

min
u0,α

{
f(α,u0) := 1

2‖W [(1 − h(Aα))u0 + h(Aα)u1] − p‖22 + λ
2 ‖Lu0‖22

}
, (7)

where L is of form [LT
x LT

y ]T where Lx and Ly is the second-order finite-
difference operators in the x and y direction, respectively. This optimization
problem is separable; it is quadratic in u0 and non-linear in α. In order to
exploit the fact that the problem has a closed-form solution in u0 for each α,
we introduce a reduced objective

f(α) = min
u0

f(α,u0).

The gradient and Hessian of this reduced objective are given by

∇f(α) = ∇αf(α,u0), (8)

∇2f(α) = ∇2
αf − ∇2

α,u0
f

(∇2
u0

f
)−1 ∇2

α,u0
f, (9)

where u0 = argminu0
f(α,u0) [2].

Using a modified Gauss-Newton algorithm to find a minimizer of f , it leads
to the following alternating algorithm

u(k+1)
0 = arg min

u0

f(α(k),u0) (10)

α(k+1) = α(k) − μk

(
HGN (f(α(k)))

)−1

∇αf(α(k),u(k+1)
0 ), (11)

where the expressions for the gradient and Gauss-Newton Hessian are given
by (4). Convergence of this alternating approach to a local minimum of (7) is
guaranteed as long as the step-length satisfies the strong Wolfe conditions [15].
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The reconstruction algorithm based on this iterative scheme is presented in
Algorithm 1. We use the LSQR method in step 3, with a pre-defined maximum
number of iterations (typically 200) and a tolerance value. A trust-region method
is applied to compute α(k+1) in step 4 restricting the conjugate gradient to only
10 iterations. We perform a total of K = 50 iterations to reconstruct the model.

Algorithm 1. Joint reconstruction algorithm
Require: p - data, W - forward modeling operator, u1 - anomaly property, A - RBF

Kernel matrix, α0 - initial RBF weights, κ - Heaviside parameter
Ensure: αK - final weights, u - corresponding model
1: for k = 0 to K − 1 do
2: compute Heaviside ε from Equation (6)

3: compute background parameter u
(k+1)
0 by solving Eq. (10)

4: compute level-set parameter α(k+1) from Eq. (11)
5: end for
6: compute u from Eq. (2).

4 Numerical Experiments

The numerical experiments are performed on 4 phantoms shown in Fig. 4. We
scale the phantoms such that u1 = 1. For the first two phantoms, the background
varies from 0 to 0.5, while for the next two, it varies from 0 to 0.8. In order to
avoid the inverse crime, we use two different discretization schemes for Eq. (1)
(namely, line kernel [4] for data generation, and Joseph kernel [4] for forward
modeling). We use ASTRA toolbox to compute the forward and backward pro-
jections [4]. First, we show the results on the full-view data and later we compare
various methods on a limited-angle case.

For the parametric level-set method, we use Wendland compactly supported
radial basis functions [8]. The RBF nodes are placed on a 5 times coarser grid
than the model grid, with an extension of two points outside the model grid
to avoid boundary effects. To constrain the initial level-set boundary to 4 grid-
points, the Heaviside width parameter κ is set to be 0.01.

(a) Model A (b) Model B (c) Model C (d) Model D

Fig. 4. Phantoms for Simulations. All the models have resolution of 256 × 256 pixels.
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The level-set parameter α is optimized using the fminunc package (trust-
region algorithm) in Matlab. A total of 50 iterations are performed for predict-
ing the α, while 200 iterations are performed for predicting u0(x) using LSQR
at each step.

4.1 Regularization Parameter Selection

The reconstruction with the proposed algorithm is influenced by the regulariza-
tion parameter λ (cf. (7)). In general, there are various strategies to choose this
parameter, e.g., [14]. As our problem formulation is non-linear, many of these
strategies do not apply. Instead we analyze the influence of the regularization
parameter numerically as follows.

We define two measures (in the least-squares sense) to quantify the resid-
uals: the data residual (DR), which determines the fit between the true data
and reconstructed data, and the model residual (MR), which determines the fit
between reconstructed model and true model. Finally, we use the Jaccard index
(JI), defined as a similarity coefficient between two sets, to capture the error
in the reconstructed shape. In practice, one can only use the data residual to
select the regularization parameter λ. It is evident from Fig. 5 that there exists
a sufficiently large region of λ for which the reconstructions are equally good.
Moreover, this region is easily identifiable from the data residual plot for various
λ values.

4.2 Full-View Test

For the full-view case, the projection data is generated on a 256 × 256 grid with
256 detectors and 180 equidistant projections (0 ≤ θ ≤ π). The Gaussian noise of
10 dB Signal-to-Noise ratio (SNR) is added to the data. The results on phantoms
A, B, C and D with the full-view data are shown in Fig. 6. The geometry of the

(a)

104 105 106 107 108 109
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 =1.83e+05 

 =6.95e+06 

 =5.46e+08 

 =3.79e+05 

  =2.07e+04

Data Residual
Model Residual

(b)λ = 1.83 × 105 (c)λ = 3.79 × 105

(d) λ = 6.95 × 106 (e) λ = 5.46 × 108

Fig. 5. Variation of residuals with regularization parameter for Tikhonov. Appropriate
region for choosing λ exists between 3.79 × 105 and 6.95 × 106. (a) behavior of DR
and MR over λ for model A with noisy limited-angle data. (b), (c), (d), (e) show
reconstructions for various λ values.
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anomalies in all of these reconstructed models are very close to the ground truth,
as is indicated by the Jaccard index shown above the figures. The background,
though, has been smoothened out with the Tikhonov regularization.

JI = 0.99 JI = 0.98 JI = 0.99 JI = 0.96

(λ = 2.97 × 107) (λ = 1.13 × 109) (λ = 2.97 × 107) (λ = 1.27 × 108)

Fig. 6. Full-view test: reconstructions with full-view data for the regularization para-
meter λ shown below it.

4.3 Limited-Angle Test

In this case, we generate synthetic data using only 5 projections, namely,
θ = {0, π/6, π/3, π/2, 2π/3}. We add Gaussian noise of 10 dB SNR to the syn-
thetic data. To check the performance of the proposed method, we compare it
to Total Variation method [4], DART [3] and its modified version for partially
discrete tomography, P-DART [12]. For Total Variation, we determine the shape
from the final reconstruction via a simple segmentation step (thresholding). A
total of 200 iterations were performed with the Total Variation method and
the regularization parameter determined such that it optimally reconstructs the
shape. In DART, the background is modeled using 20 discrete grey-values for
model A and B, while 30 discrete grey-values for model C and D. True model has
been segmented per mentioned grey-values to generate data for DART. 40 DART
iterations were performed in each case. For P-DART, a total of 150 iterations
were performed.

The results on limited-angle data are presented in Fig. 7. The proposed
method is able to capture most of the fine details (evident from the Jaccard
Index) in the phantoms even with the very limited data with moderate noise.
The P-DART method achieves the least amount of data residual in all the cases,
but fails to capture the complete geometry of the anomaly. The Total varia-
tion method gives surprisingly good reconstructions of the shape. However, we
obtained these results by selecting the best over a large range of regularization
parameters. The level-set method consistently gives the best reconstruction of
the shape.
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Phantom Total Variation DART P-DART Proposed Method

(λ = 3.36) (λ = 3.793 × 105)

DR = 59.91 DR = 100.36 DR = 12.8 DR = 70.2
JI = 0.92 JI = 0.49 JI = 0.76 JI = 0.96

(λ = 1.438) (λ = 3.793 × 105)

DR = 39.39 DR = 32.8 DR = 10.9 DR = 52.6
JI = 0.78 JI = 0.4 JI = 0.69 JI = 0.91

(λ = 3.36) (λ = 7.438 × 105)

DR = 70.35 DR = 115.28 DR = 16.54 DR = 117.56
JI = 0.92 JI = 0.19 JI = 0.39 JI = 0.95

(λ = 0.6158) (λ = 3.793 × 105)

DR = 21.52 DR = 78.30 DR = 8.92 DR = 50.10
JI = 0.80 JI = 0.25 JI = 0.49 JI = 0.87

Fig. 7. Reconstructions with noisy limited data. The first column shows the true mod-
els, while the last 4 columns show the reconstructions with various methods. Red dotted
line shows the contour of the segmented model in Total Variation method. Different
measures are also shown below each reconstructed model. (Color figure online)

5 Conclusions and Discussion

We discussed a parametric level-set method for partially discrete tomography.
We model such objects as a constant-valued shape embedded in a continuously
varying background. The shape is represented using a level-set function, which
in turn is represented using radial basis functions. The reconstruction problem
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is posed as a bi-level optimization problem for the background and level-set
parameters. This reconstruction problem can be efficiently solved using a vari-
able projection approach, where the shape is iteratively updated. Each iteration
requires a full reconstruction of the background. The algorithm includes some
practical heuristics for choosing various parameters that are introduced as part
of the parametric level-set method. Numerical experiments on a few numerical
phantoms show that the proposed approach can outperform other popular meth-
ods for (partially) discrete tomography in terms of the reconstruction error. As
the proposed algorithm requires repeated full reconstructions, it is currently an
order of magnitude slower than the other methods. Future research is directed
at making the method more efficient.

Acknowledgments. This work is part of the Industrial Partnership Programme
(IPP) ‘Computational sciences for energy research’ of the Foundation for Fundamental
Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific
Research (NWO). This research programme is co-financed by Shell Global Solutions
International B.V. The second and third authors are financially supported by the NWO
as part of research programmes 613.009.032 and 639.073.506 respectively.

References

1. Aghasi, A., Kilmer, M., Miller, E.L.: Parametric level set methods for inverse prob-
lems. SIAM J. Imaging Sci. 4(2), 618–650 (2011)

2. Aravkin, A.Y., Van Leeuwen, T.: Estimating nuisance parameters in inverse prob-
lems. Inverse Prob. 28(11), 115016 (2012)

3. Batenburg, K.J., Sijbers, J.: Dart: a practical reconstruction algorithm for discrete
tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011)

4. Bleichrodt, F., van Leeuwen, T., Palenstijn, W.J., van Aarle, W., Sijbers, J.,
Batenburg, K.J.: Easy implementation of advanced tomography algorithms using
the astra toolbox with spot operators. Numer. Algorithms 71(3), 673–697 (2016)

5. Burger, M.: A level set method for inverse problems. Inverse Prob. 17(5), 1327
(2001)

6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

7. Dorn, O., Lesselier, D.: Level set methods for inverse scattering. Inverse Prob.
22(4), R67 (2006)

8. Kadu, A., Van Leeuwen, T., Mulder, W.A.: Salt reconstruction in full waveform
inversion with a parametric level-set method. IEEE Trans. Comput. Imaging 3(2),
305–315 (2016)

9. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM,
Philadelphia (2001)

10. Klann, E., Ramlau, R., Ring, W.: A mumford-shah level-set approach for the inver-
sion and segmentation of SPECT/CT data. Inverse Probl. Imaging 5(1), 137–166
(2011)

11. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, vol. 153.
Springer, New York (2006). doi:10.1007/b98879

12. Roelandts, T., Batenburg, K., Biermans, E., Kübel, C., Bals, S., Sijbers, J.: Accu-
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