57 research outputs found

    Functional analysis of Plasmodium falciparum subpopulations associated with artemisinin resistance in Cambodia

    Full text link
    Background: Plasmodium falciparum malaria is one of the most widespread parasitic infections in humans and remains a leading global health concern. Malaria elimination efforts are threatened by the emergence and spread of resistance to artemisinin-based combination therapy, the first-line treatment of malaria. Promising molecular markers and pathways associated with artemisinin drug resistance have been identified, but the underlying molecular mechanisms of resistance remains unknown. The genomic data from early period of emergence of artemisinin resistance (2008–2011) was evaluated, with aim to define k13 associated genetic background in Cambodia, the country identified as epicentre of anti-malarial drug resistance, through characterization of 167 parasite isolates using a panel of 21,257 SNPs. Results: Eight subpopulations were identified suggesting a process of acquisition of artemisinin resistance consistent with an emergence-selection-diffusion model, supported by the shifting balance theory. Identification of population specific mutations facilitated the characterization of a core set of 57 background genes associated with artemisinin resistance and associated pathways. The analysis indicates that the background of artemisinin resistance was not acquired after drug pressure, rather is the result of fixation followed by selection on the daughter subpopulations derived from the ancestral population. Conclusions: Functional analysis of artemisinin resistance subpopulations illustrates the strong interplay between ubiquitination and cell division or differentiation in artemisinin resistant parasites. The relationship of these pathways with the P. falciparum resistant subpopulation and presence of drug resistance markers in addition to k13, highlights the major role of admixed parasite population in the diffusion of artemisinin resistant background. The diffusion of resistant genes in the Cambodian admixed population after selection resulted from mating of gametocytes of sensitive and resistant parasite populations. (Résumé d'auteur

    Worldwide variations in artificial skyglow

    Get PDF
    Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program

    Scientific opportunies for bERLinPro 2020+, report with ideas and conclusions from bERLinProCamp 2019

    Get PDF
    The Energy Recovery Linac (ERL) paradigm offers the promise to generate intense electron beams of superior quality with extremely small six-dimensional phase space for many applications in the physical sciences, materials science, chemistry, health, information technology and security. Helmholtz-Zentrum Berlin started in 2010 an intensive R\&D programme to address the challenges related to the ERL as driver for future light sources by setting up the bERLinPro (Berlin ERL Project) ERL with 50 MeV beam energy and high average current. The project is close to reach its major milestone in 2020, acceleration and recovery of a high brightness electron beam. The goal of bERLinProCamp 2019 was to discuss scientific opportunities for bERLinPro 2020+. bERLinProCamp 2019 was held on Tue, 17.09.2019 at Helmholtz-Zentrum Berlin, Berlin, Germany. This paper summarizes the main themes and output of the workshop

    KVU Oslo-navet: A toolbox for achieving a high-quality PT-network

    No full text
    Dette notatet gir innspill til arbeidet med rolledeling mellom de kollektive driftsartene. Det er basert på en presentasjon som Axel Kuehn holdt på KVU Oslo- Navets verksted i juni 2014

    KVU Oslo-navet: Inconsistencies

    No full text
    Dette notatet tar for seg de utenlandske ekspertene Kuehn og Nielsens vurderinger av inkonsekvenser mellom forskjellige scenarier, transportmodellberegninger og rapporter i KVU Oslo-Navet

    KVU Oslo-Navet: Benchmarking Oslo vs other European cities

    No full text
    Dette notatet tar for seg en sammenligning av Oslo og ni europeiske byer. Kriteriene som er brukt er blant annet befolkningstall, bilhold, alderssammensetning og rolledeling mellom kollektive driftsarter. Notatet tar utgangspunkt i en presentasjon som Axel Kuehn holdt på KVU Oslo-Navets verksted i juni 2014

    ADAPTIVE FETI-DP AND BDDC METHODS WITH A GENERALIZED TRANSFORMATION OF BASIS FOR HETEROGENEOUS PROBLEMS

    No full text
    In FETI-DP (Finite Element Tearing and Interconnecting) and BDDC (Balancing Domain Decomposition by Constraints) domain decomposition methods, the transformation-of-basis approach is used to improve the convergence by combining the local assembly with a change of basis. Suitable basis vectors can be constructed by the recently introduced adaptive coarse space approaches. The resulting FETI-DP and BDDC methods fulfill a condition number bound independent of heterogeneities in the problem. The adaptive method with a transformation of basis presented here builds on a recently introduced adaptive FETI-DP approach for elliptic problems in three dimensions and uses a coarse space constructed from solving small, local eigenvalue problems on closed faces and on a small number of edges. In contrast to our earlier work on adaptive FETI-DP, the coarse space correction is not implemented by using balancing (or deflation), which requires the use of an exact coarse space solver, but by using local transformations. This will make it simpler to extend the method to a large number of subdomains and large supercomputers. The recently established theory of a generalized transformation-of-basis approach yields a condition number estimate for the preconditioned operator that is independent of jumps of the coefficients across and inside subdomains when using the local adaptive constraints. It is shown that all results are also valid for BDDC. Numerical results are presented in three dimensions for FETI-DP and BDDC. We also provide a comparison of different scalings, i.e., deluxe, rho, stiffness, and multiplicity for our adaptive coarse space in 3D

    ADAPTIVE COARSE SPACES FOR FETI-DP IN THREE DIMENSIONS

    No full text
    An adaptive coarse space approach including a condition number bound for dual primal finite element tearing and interconnecting (FETI-DP) methods applied to three dimensional problems with coefficient jumps inside subdomains and across subdomain boundaries is presented. The approach is based on a known adaptive coarse space approach enriched by a small number of additional local edge eigenvalue problems. These edge eigenvalue problems serve to make the method robust and permit a condition number bound which depends only on the tolerance of the local eigenvalue problems and some properties of the domain decomposition. The introduction of the edge eigenvalue problems thus turns a well-known condition number indicator for FETI-DP and balancing domain decomposition by constraints (BDDC) methods into a condition number estimate. Numerical results are presented for linear elasticity and heterogeneous materials supporting our theoretical findings. The problems considered include those with random coefficients and almost incompressible material components
    corecore