38 research outputs found

    Clinical aspects of usher syndrome and the USH2A gene in a cohort of 433 patients

    Full text link
    IMPORTANCE A new statistical approach is needed to describe the clinical differences between type I and type II Usher syndrome and between the 2 most frequent mutations in the USH2A gene. OBJECTIVES To describe the primary phenotypic characteristics and differences between type I and type II Usher syndrome and to establish a phenotype-genotype correlation for the 2 most frequent mutations in the USH2A gene. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional study at a genetics department, in which clinical evaluations were performed for 433 patients (297 unrelated families) who were classified as having type I, II, III, atypical, or unclassified Usher syndrome according to their clinical history, pedigree data, results from ophthalmological studies, and audiological, neurophysiological, and vestibular test results. Molecular studies were performed for 304 patients (256 unrelated families). The Mann-Whitney U test or the χ2 test was used for calculating the differences between mean values for the analyzed parameters. MAIN OUTCOMES AND MEASURES Age at diagnosis; age at onset of night blindness, visual field loss, visual acuity loss, and cataracts; and severity and age at diagnosis of hearing loss. RESULTS The comparison between patients with type I Usher syndrome and those with type II Usher syndrome revealed P < .001 for most items analyzed. The most frequent mutations in the USH2A gene were the p.Glu767Serfs*21 and p.Cys759Phe mutations, with an allelic frequency of 23.2%(63 of 272 alleles) and 8.1% (22 of 272 alleles), respectively. The phenotypic analysis for patients carrying p.Cys759Phe showed P < .001 for most items analyzed when compared with patients carrying p.Glu767Serfs*21 and when compared with patients carrying other mutations in the USH2A gene. None of the p.Cys759Phe patients exhibited a severe hearing loss phenotype, and more than 60%had only mild hearing loss. Most patients carrying the p.Glu767Serfs*21 mutation (72.1%) were moderately deaf. CONCLUSIONS AND RELEVANCE Our study presents the clinical differences between type I and type II Usher syndrome and between the 2 most frequent mutations in the USH2A gene. Detailed genotype-phenotype correlations, as presented in our study, allow for a better correlation of clinical signs with a known genotype and can improve the clinical management, genetic counseling, and risk assessment of patients with Usher syndrome because an estimated prognosis of their disease can be madeThis work was supported by grant PI13/00226 (to Servicio de Genética, Instituto de Investigación–Fundación Jiménez Díaz, Madrid, Spain), by grant PI13/00638 (to Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain), and by grant 06/07/0036 (to Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain) from Fundaluce and Organización Nacional de Ciegos Españole

    Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the <it>USH2A </it>gene account for 74-90% of the USH2 cases.</p> <p>Methods</p> <p>To identify the genetic cause of the disease and determine the frequency of <it>USH2A </it>mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing.</p> <p>Results</p> <p>As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and <it>in vitro </it>experiments, 37 variants (23 of them novel) were classified as pathogenic mutations.</p> <p>Conclusions</p> <p>This report provide a wide spectrum of <it>USH2A </it>mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in <it>USH2A </it>are responsible for 76.1% of USH2 disease in patients of Spanish origin.</p

    Human iPSC derived disease model of MERTK-associated retinitis pigmentosa

    Get PDF
    Retinitis pigmentosa (RP) represents a genetically heterogeneous group of retinal dystrophies affecting mainly the rod photoreceptors and in some instances also the retinal pigment epithelium (RPE) cells of the retina. Clinical symptoms and disease progression leading to moderate to severe loss of vision are well established and despite significant progress in the identification of causative genes, the disease pathology remains unclear. Lack of this understanding has so far hindered development of effective therapies. Here we report successful generation of human induced pluripotent stem cells (iPSC) from skin fibroblasts of a patient harboring a novel Ser331Cysfs*5 mutation in the MERTK gene. The patient was diagnosed with an early onset and severe form of autosomal recessive RP (arRP). Upon differentiation of these iPSC towards RPE, patient-specific RPE cells exhibited defective phagocytosis, a characteristic phenotype of MERTK deficiency observed in human patients and animal models. Thus we have created a faithful cellular model of arRP incorporating the human genetic background which will allow us to investigate in detail the disease mechanism, explore screening of a variety of therapeutic compounds/reagents and design either combined cell and gene- based therapies or independent approaches.This work was supported by Andalusian Health Council (PI-0324-2013), Instituto de Salud Carlos III (PI13/01331), Spanish Ministry of Economy and Competitiveness-FEDER BFU2012-36845, Instituto de Salud Carlos III RETICS RD12/0034/0010 and Academy of Finland (218050; 272808)

    KCNV2-associated retinopathy: genotype–phenotype correlations – KCNV2 study group report 3

    Get PDF
    BACKGROUND/AIMS: To investigate genotype–phenotype associations in patients withKCNV2retinopathy. METHODS: Review of clinical notes, best-corrected visual acuity (BCVA), molecular variants, electroretinography (ERG) and retinal imaging. Subjects were grouped according to the combination ofKCNV2variants—two loss-of-function (TLOF), two missense (TM) or one of each (MLOF)—and parameters were compared. RESULTS: Ninety-two patients were included. The mean age of onset (mean±SD) in TLOF (n=55), TM (n=23) and MLOF (n=14) groups was 3.51±0.58, 4.07±2.76 and 5.54±3.38 years, respectively. The mean LogMAR BCVA (±SD) at baseline in TLOF, TM and MLOF groups was 0.89±0.25, 0.67±0.38 and 0.81±0.35 for right, and 0.88±0.26, 0.69±0.33 and 0.78±0.33 for left eyes, respectively. The difference in BCVA between groups at baseline was significant in right (p=0.03) and left eyes (p=0.035). Mean outer nuclear layer thickness (±SD) at baseline in TLOF, MLOF and TM groups was 37.07±15.20 µm, 40.67±12.53 and 40.38±18.67, respectively, which was not significantly different (p=0.85). The mean ellipsoid zone width (EZW) loss (±SD) was 2051 µm (±1318) for patients in the TLOF, and 1314 µm (±965) for MLOF. Only one patient in the TM group had EZW loss at presentation. There was considerable overlap in ERG findings, although the largest DA 10 ERG b-waves were associated with TLOF and the smallest with TM variants. CONCLUSIONS: Patients with missense alterations had better BCVA and greater structural integrity. This is important for patient prognostication and counselling, as well as stratification for future gene therapy trials

    A crowdsourcing database for the copy-number variation of the Spanish population

    Get PDF
    Background: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. Results: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/. Conclusion: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
    corecore