61 research outputs found

    Analogue Gravity and ultrashort laser pulse filamentation

    Full text link
    Ultrashort laser pulse filaments in dispersive nonlinear Kerr media induce a moving refractive index perturbation which modifies the space-time geometry as seen by co-propagating light rays. We study the analogue geometry induced by the filament and show that one of the most evident features of filamentation, namely conical emission, may be precisely reconstructed from the geodesics. We highlight the existence of favorable conditions for the study of analogue black hole kinematics and Hawking type radiation.Comment: 4 pages, revised versio

    Quantum dot opto-mechanics in a fully self-assembled nanowire

    Get PDF
    We show that fully self-assembled optically-active quantum dots (QDs) embedded in MBE-grown GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion. Oscillations of the NW modulate the QD emission energy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning of two neighboring QDs into resonance, possibly allowing for emitter-emitter coupling. Both the QDs and the coupling mechanism -- material strain -- are intrinsic to the NW structure and do not depend on any functionalization or external field. Such systems open up the prospect of using QDs to probe and control the mechanical state of a NW, or conversely of making a quantum non-demolition readout of a QD state through a position measurement.Comment: 20 pages, 6 figure

    Generation and control of extreme-blue shifted continuum peaks in optical Kerr media

    Get PDF
    We demonstrate tunable, extremely blueshifted continuum in \u3bb=1.055 \u3bcm ultrashort laser pulse filamentation in silica. Close to threshold, the continuum appears as a single, isolated blue peak. The spectral position of the two supercontinuum components can be tuned and a regime with encompassing fundamental and second harmonic is possible to achieve. At higher energies, the continuum expands in bandwidth starting from the blue peak. The spectral dynamics and tunability are explained in terms of X-wave generation and intrafilament pulse splitting which may be controlled by modifying the input pulse focusing conditions

    Growth mechanisms and process window for InAs V-shaped nanoscale membranes on Si[001]

    Get PDF
    Organized growth of high aspect-ratio nanostructures such as membranes is interesting for opto-electronic and energy harvesting applications. Recently, we reported a new form of InAs nano-membranes grown on Si substrates with enhanced light scattering properties. In this paper we study how to tune the morphology of the membranes by changing the growth conditions. We examine the role of the V/III ratio, substrate temperature, mask opening size and inter-hole distances in determining the size and shape of the structures. Our results show that the nano-membranes form by a combination of the growth mechanisms of nanowires and the Stranski-Krastanov type of quantum dots: in analogy with nanowires, the length of the membranes strongly depends on the growth temperature and the V/III ratio; the inter-hole distance of the sample determines two different growth regimes: competitive growth for small distances and an independent regime for larger distances. Conversely, and similarly to quantum dots, the width of the nano-membranes increases with the growth temperature and does not exhibit dependence on the V/III ratio. These results constitute an important step towards achieving rational design of high aspect-ratio nanostructures

    III-V nanowire arrays: growth and light interaction

    Get PDF
    Semiconductor nanowire arrays are reproducible and rational platforms for the realization of high performing designs of light emitting diodes and photovoltaic devices. In this paper we present an overview of the growth challenges of III-V nanowire arrays obtained by molecular beam epitaxy and the design of III-V nanowire arrays on silicon for solar cells. While InAs tends to grow in a relatively straightforward manner on patterned (111) Si substrates, GaAs nanowires remain more challenging; success depends on the cleaning steps, annealing procedure, pattern design and mask thickness. Nanowire arrays might also be used for next generation solar cells. We discuss the photonic effects derived from the vertical configuration of nanowires standing on a substrate and how these are beneficial for photovoltaics. Finally, due to the special interaction of light with standing nanowires we also show that the Raman scattering properties of standing nanowires are modified. This result is important for fundamental studies on the structural and functional properties of nanowires

    Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon

    Get PDF
    Multiple seed formation by three-dimensional twinning at the initial stages of growth explains the manifold of orientations found when self-catalyzed GaAs nanowires grow on silicon. This mechanism can be tuned as a function of the growth conditions by changing the relative size between the GaAs seed and the Ga droplet. We demonstrate how growing under high V/III ratio results in a 100% yield of vertical nanowires on silicon(111). These results open up the avenue towards the efficient integration of III-V nanowire arrays on the silicon platform

    Bottom-up engineering of InAs at the nanoscale: From V-shaped nanomembranes to nanowires

    Get PDF
    The ability to rationally tune the morphology of nanostructures is a fundamental milestone in nanoscale engineering. In particular, the possibility to switch between different shapes within the same material system represents a further step in the development of complex nanoscale devices and it increases the potential of nanostructures in practical applications. We recently reported a new form of InAs nanostructures growing epitaxially on Si substrates as vertical V-shaped membranes. Here we demonstrate the possibility of modifying the shape of these nanomembranes and turning them into nanowires by modulating the surface roughness of the substrate by varying the surface treatment. We show that the growth of nanomembranes is favored on smooth surfaces. Conversely rough surfaces enhance the growth of nanowires. We also shove that the V/III ratio plays a key role in determining the absolute yield, i.e. how many nanostructures form during growth. These results envisage a new degree of freedom in the engineering of bottom up nanostructures and contribute to the achievement of nanostructure networks. (C) 2015 Elsevier B.V. All rights reserved

    Three-dimensional nanoscale study of Al segregation and quantum dot formation in GaAs/AlGaAs core-shell nanowires

    Get PDF
    GaAs/Al-GaAs core-shell nanowires fabricated by molecular beam epitaxy contain quantum confining structures susceptible of producing narrow photoluminescence (PL) and single photons. The nanoscale chemical mapping of these structures is analyzed in 3D by atom probe tomography (APT). The study allows us to confirm that Al atoms tend to segregate within the AlGaAs shells towards the vertices of the hexagons defining the nanowire cross section. We also find strong alloy fluctuations remaining AlGaAs shell, leading occasionally to the formation of quantum dots (QDs). The PL emission energies predicted in the framework of a 3D effective mass model for a QD analyzed by APT and the PL spectra measured on other nanowires from the same growth batch are consistent within the experimental uncertainties. (C) 2014 AIP Publishing LLC

    High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga

    Get PDF
    GaAs nanowire arrays on Silicon offer great perspectives in the :optoeleetronics and solar cell industry. To fulfill this potential, gold-free growth in predetermined positions should be achieved. Ga-assisted growth of GaAs nano-wires in the form of array has been shown to be challenging and difficult to reproduce. In this work, we provide some of the key elements for obtaining a high yield of GaAs nanowires on patterned Si in a reproducible way: contact angle and pinning of the Ga droplet inside the apertures achieved by the modification of the surface properties of the nanoscale areas exposed to growth. As an example, an amorphous silicon layer between the crystalline substrate and the Oxide mask results in a contact angle around 90 degrees, leading to a high yield of vertical nanowires: Another example for tuning the Contact angle is anticipated, native oxide with controlled thickness. This work opens new perspectives for the rational and reproducible growth of GaAs nanowire arrays on silicon
    corecore