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Generation and control of extreme blueshifted continuum peaks in optical Kerr media
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We demonstrate tunable, extremely blueshifted continuum in A=1.055 wm ultrashort laser pulse filamenta-
tion in silica. Close to threshold, the continuum appears as a single, isolated blue peak. The spectral position
of the two supercontinuum components can be tuned and a regime with encompassing fundamental and second
harmonic is possible to achieve. At higher energies, the continuum expands in bandwidth starting from the blue
peak. The spectral dynamics and tunability are explained in terms of X-wave generation and intrafilament pulse

splitting which may be controlled by modifying the input pulse focusing conditions.
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L. INTRODUCTION

Supercontinuum (SC) generation, i.e., the generation of
an ultrabroadband spectrum starting from a narrow-
bandwidth laser pulse, is attracting much interest due to the
potential applications in a wide range of areas such as LI-
DAR [1], few-cycle pulse generation [2], and ultraviolet
spectroscopy [3]. Although in general the physical processes
lying at the heart of SC generation are the same in all Kerr
media and are well known, e.g., self-phase modulation
(SPM), four-wave mixing (FWM), shock-front formation,
etc. [3], there are still a number of features, such as the
formation of spectrally isolated blueshifted peaks described
below, whose true nature remains rather elusive. In bulk me-
dia the input pulse collapses assuming a self-similar Townes
profile [4,5]. As the intensity increases the collapse is ar-
rested by a saturating mechanism such as nonlinear losses or
self-generated-plasma defocusing and a filament is formed,
i.e., a tightly focused peak that maintains a very small diam-
eter for many diffraction lengths [6]. Strong spatiotemporal
instabilities are observed that give rise to SC generation and
a new feature with respect to the fiber case, known as conical
emission, i.e., the generation of angularly dispersed frequen-
cies with the emission angle that increases with increasing
frequency shift. Conical emission is now recognized as a
direct manifestation of space-time dynamics [7] and of the
formation of X waves [9,8]. X waves are a particular example
of conical waves and form a continuous family of stationary
solutions to the wave propagation equation in both the linear
[10] and nonlinear regime [11]. This family is parametrized
by the phase and group velocities which may, in principle,
take on any particular value. Filamentation has thus been
interpreted as the spontaneous formation and interaction of X
waves [12]: pulse splitting is related to the formation of two
X waves with opposite group velocities (in the moving ref-
erence frame on the input pulse) while SC appears as a nec-
essary step in the X-wave formation process [14].

Laser pulse filamentation in the anomalous group-
velocity-dispersion (GVD) region has been investigated,

1050-2947/2008/78(3)/033825(6)

033825-1

PACS number(s): 42.65.Re, 42.65.Ky, 42.65.Jx

with particular attention to spectral reshaping, numerically in
2D planar waveguides highlighting similar dynamics to the
1D case [13], and both experimentally and numerically in 3D
bulk media [15-17]. A localized pulse is formed together
with a strongly blueshifted peak that exhibits a marked an-
gular dispersion that in the 3D case finds a natural descrip-
tion in the so-called “Fish” conical wave [15]. More recently,
attention has been given to a similar blueshifted peak ob-
served with a pump pulse in the normal GVD regime and far
away from the zero GVD wavelength [18]. A tunable blue
peak in the continuum spectrum was generated by tuning the
chirp of the input pump pulse, with a maximum shift of
about 300 nm. This blue peak was roughly 5 dB (a factor 3)
more intense than the marked SC and thus spectrally “con-
nected” to the pump pulse and has been explained in terms of
self-steepening.

II. EXPERIMENTS

Here we study the formation of radiation that is strongly
blueshifted over more than an octave. The blue peak is asso-
ciated with a collapsing pump pulse in bulk fused silica in
the normal GVD regime and is connected to the pump wave-
length only by an extremely weak continuum (a factor ~ 100
times less intense) that was in some cases not even experi-
mentally detectable. This blue spectral peak is shown to be
the blueshifted tail of the same pump X wave that is formed
in the filament. In particular, the position of the blueshifted
tail depends on the X-wave group velocity. The latter may be
continuously tuned by controlling the input pulse parameters.
Our numerics shed light onto the evolution of the blue peak
in connection with the pump X wave: the X wave accelerates
during propagation and in doing so it accordingly modifies
the spectral location of the blue peak leading to an overall
broadening of the SC.

Experiments were performed with a 1 ps duration [full
width at half maximum (FWHM)], 1055 nm laser pulse de-
livered by a 10 Hz, amplified Nd:glass laser (Twinkle, Light
Conversion Ltd., Vilnius, Lithuania). The pulse had a diam-
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FIG. 1. (Color online) Experimental spectra generated from a
1-cm-long sample of fused silica placed at 52 cm from the focusing
lens and with increasing input energy: (a) 20 uJ, (b) 30 wJ, and (c)
50 wl.

eter of 5 mm (FWHM) and was focused into a 2 cm long
sample of fused silica using a 52 cm focal length lens. The
input energy was adjusted using a first order half-wave plate
and a polarizer. Figure 1 shows the spectra recorded using a
14-bit fiber-coupled spectrometer (Ocean Optics) when the
sample is placed at 52 cm from the lens and with (a) 20 uJ,
(b) 30 wJ, and (c) 50 wJ input energy. The pump pulse is
saturated so as to highlight the weaker spectral features. As
may be seen, at the threshold input energy of 20 ulJ a single
distinct, apparently spectrally isolated blue peak forms at
450 nm, with more than an octave shift from the pump
wavelength. The total energy in this peak was roughly
100 nJ corresponding to a conversion efficiency of 0.5%.
Increasing the input energy leads to the formation of a broad-
band emission between 400 and 700 nm. The notable feature
of this bandwidth increase is that rather than extending from
the pump spectrum, as is commonly observed and as would
be expected for a generation process related to the pump
SPM or self-steepening, the SC grows starting from the
450 nm blue peak. We also note that, differently from Ref.
[8], no redshifted peaks (with respect to the pump frequency)
were observed in the spectrum.

In Figs. 2(a) and 2(b) we show the angularly resolved
spectra, measured with a commercial imaging spectrometer
(Lot-Oriel, MS260i) and recorded with a modified digital
Nikon D70 camera, for the same settings as in Fig. 1 and for
input energies of 20 and 40 uJ, respectively. In Fig. 2(a) we
note the onset of weak conical emission around the pump,
indicating that we are at the threshold for filamentation. Most
importantly, the angular dispersion of the blue peak also
starts to be discernible close to threshold. We may fit the
conical emission at the pump wavelength, Ay=2mc/ w using
the X-wave relation kiz\s“'kz—ki with k=(w/c)n(w) and

k() = k(wp) + —22, (1)
Ux

where vy is the group velocity of the X-wave (i.e., the split
pulse) Eq. (1) may be derived by simply requiring that the X
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FIG. 2. (Color online) Experimental angularly resolved spectra
for input pulse energies of (a) 20 wJ and (b) 40 wJ. The dashed
white lines show a plot of Eq. (1) with vx=2.035X 108 m/s.

wave does not suffer dispersion, i.e., dzkz/dwzzo. However,
it may also derived from the effective three wave mixing
(ETWM) model [17]: the Kerr-induced pulse reshaping is
described in terms of a scattering process in which the input
pump pulse generates a nonlinear polarization wave in the
medium which in turn scatters the pump pulse. The phase
matching relation for this process is given precisely by Eq.
(1) in which vy is interpreted as the group velocity of the
nonlinear polarization wave. We note that as vy is derived
from the angular spectrum, Eq. (1) has no free parameters.
The white dashed line in Fig. 2(a) shows the plot of Eq. (1)
with vy=2.035X10® m/s. As may be seen the curve ex-
plains the conical emission around both the pump wave-
length and the blue peak, while it has no solutions for fre-
quencies in the interval between the pump and the blue peak.
In particular, the position of the blue peak is determined by
the precise value of vy: larger splitting velocities lead to
larger wavelength gaps between the pump and the blue-
shifted X tails. Following the same arguments as in Ref. [8],
the good overlap of Eq. (1) with the measured spectral fea-
tures indicates that, although in the experiments the blue
peak appears to be spectrally isolated from the pump pulse, it
should actually be considered in the near field as part of the
same, single subluminal X wave originating from the pump
pulse. Figure 2(b) shows that at higher input energies the
blue peak maintains its main characteristics. The spectrum is
now broadened and particularly intense between 450 and
700 nm. We note that the continuum does not extend signifi-
cantly toward shorter wavelengths and remains contained be-
tween the pump and blue X tails. We also underline the new
spectral peak close to 650 nm that also exhibits a marked
angular dispersion. We interpret this as due to the higher
input energy that leads to a second pulse splitting process
within the fully formed filament [12]. Indeed, it has been
pointed out that the pulse splitting velocity, which is also the
group velocity vy of the X waves, depends on the pump pulse
peak intensity at the moment of tightest nonlinear focus [8].
It is expected that separate pulse splitting cycles within the
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FIG. 3. (Color online) Longitudinal (k, =0) phase mismatch
calculated from Eq. (1) for three different cases: vy=v,
=(dk/dw)™'=2.052X 108 m/s (red dashed line), vy=2.048
% 108 m/s (blue dotted line), and vy=2.035%10% m/s (blue solid
line). Only pulse splitting events in which the trailing peak velocity
v, is sufficiently different from the group velocity, as in the third
case shown, will generate a well separated blue peak in the super-
continuum spectrum.

filament will lead to distinct peak intensities. Therefore, the
X waves that emerge from distinct splitting events will mani-
fest themselves in the spectrum as angularly dispersed emis-
sion peaks centered at distinct wavelengths.

In order to emphasize the role played by the group veloc-
ity of the filament pulse in generating the SC features, lets
consider just the on-axis dynamics of the pulse. In Fig. 3 we
plot the on-axis phase mismatch AK for the scattering pro-
cess described by AK=k(w)—k.(w), where k() is given by
Eq. (1) for three different values of vy. If vy is determined
solely by material dispersion vy=v,=(dk/ dw)™!, ie., the
pulse is propagating with the same group velocity of the
input Gaussian pulse, then AK >0 for all wavelengths and no
instability in the form of a blueshifted peak is expected to
appear (red dotted line). If vy is slightly smaller than the
material group velocity then AK~0 for wavelengths be-
tween 1055 nm and ~800 nm (blue dashed line). So the in-
put pulse will be efficiently scattered from the material non-
linear polarization wave within this wavelength range and
the SC will appear as originating from the pump spectrum.
This is the typical situation observed in most filamentation
regimes. Conversely, if the vy is significantly different from
v, then AK is large everywhere except in the close vicinity of
a strongly blueshifted wavelength (the blue solid line shows
the AK curve for the value vyx=2.035 X 10® m/s determined
from Fig. 2). Therefore, the SC will no longer develop start-
ing from the pump and the phase-matched scattering process
will appear as a blue peak, eventually with only extremely
weak scattered light in the spectral region separating it from
the pump, as observed in our experiments.

We now address the possibility to tune the position of the
blue peak in the spectrum and therefore control the SC gen-
eration process. The simplest experimental option is to tune
the input focusing condition. Figures 4(a)-4(f) show the
spectra recorded with the sample placed at z=49, 50, 50.5,
51, 52, and 53 cm from the input focusing lens (which had a
fixed 52 cm focal length). The energy for each measurement
was adjusted in each case so as to be just slightly above the
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FIG. 4. (Color online) Spectra measured for different positions
of the fused sample with respect to the input focusing lens. (a)
49 cm, (b) 50 c¢m, (¢c) 51 c¢m, (d) 52.5 cm, (e) 53 c¢m, and (f) 54 cm.

blue peak generation threshold. When focusing the input
beam after the sample we were not able to produce a blue-
shifted peak [Fig. 4(a)]. For high input energies, the SC ex-
tends from the pump wavelength and exhibits a sharp cutoff
at 450 nm. By focusing close to the output facet of the
sample we observe a peak at 405 nm [Fig. 4(b)] which may
be continuously tuned up to 550 nm [Figs. 4(b)—4(f)] by sim-
ply shifting the sample further away from the focusing lens.
We note that exactly the same behavior was reproduced by
varying the collimated beam diameter with a variable-
diameter iris in front of the focusing lens. Decreasing the
beam size before the lens leads to increase of the FWHM at
the sample input facet and we observe an increase in the
blue-peak wavelength.

III. NUMERICS

We performed a series of numerical simulations in order
to confirm our experimental results and gain a deeper insight
into the underlying physics. We used the unidirectional pulse
propagation equation solver [20,21] to simulate the pulse
evolution and filament creation (see the Appendix for more
details). The input pulse was chosen to match the experimen-
tally used pulse albeit with a slightly lower input energy
(1 ps pulse at 1.05 um wavelength, collimated to a 28 um
beam waist) at the entrance into a fused silica sample and
linear chromatic dispersion was modeled by a Sellmeier for-
mula. The z coordinate in all the shown numerical results is
referred to the distance within the Kerr sample so that z=0 is
at the input facet. The nonlinear index value used in these
simulations was 2.7 X 1072 m?/W, including an 18% frac-
tion of the stimulated Raman response approximated by a
single oscillator with the angular eigenfrequency of 8.3
% 1013 57! and a decay time of 32 fs. Multiphoton ionization
was  described by a simple power-law  rate
~107130 (m?2/W)38. Our numerical simulations corroborate
that the pulse splitting velocity may be controlled by various
modifications of the pump pulse: (i) increasing the pump
wavelength or pulse duration in general leads to faster split-
ting velocities, (ii) use of a flat top or super-Gaussian pulse is
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FIG. 5. (Color online) Numerically simulated pulse evolution
just after the nonlinear focus. Pulse splitting has occurred and the
trailing pulse, for z=5 mm, is forming a trailing shock front. Fur-
ther propagation leads to an enhancement of the wave breaking, i.e.,
the formation of rapid oscillation on the trailing tail.

also very effective in increasing the splitting velocity, (iii) a
third possibility is to vary the input beam diameter. Although
all three approaches are effective in tuning vy here we focus
our attention only on the third strategy that was also adopted
in the experiments.

In Fig. 5 we show the numerical evolution of the input
pump pulse on-axis intensity profile with an input energy of
5.2 pm and a diameter of 5 mm before the f=52 cm focus-
ing lens. Just after the nonlinear focus the pulse splits and
starts to form a shock front on the trailing edge of the slower,
subluminal pulse. Further propagation leads to marked wave
breaking, i.e., oscillations on the tail that, as will be shown
further on, are due to the interference between the split
daughter pulse and the blue-peak. In Fig. 6 we show the
far-field spectra for the same simulation at distances z
=5 mm and z=5.8 mm. As may be seen, simultaneously to
the shock-front formation the blue peak also appears in the
spectrum [Fig. 6(a)] and, as noted elsewhere [16,18], the two
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FIG. 6. (Color online) Numerically simulated far-field spectra
with an input energy of 5.2 wJ and an input diameter of 5 mm
before the f=52 cm focusing lens and at propagation distances of
(a) 5 mm and (b) 5.8 mm. Both figures are plotted over 4 decades
in logarithmic scale.
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FIG. 7. (Color online) Numerically calculated on-axis spectra
for two different input beam diameters: 5 mm green solid line and
3.3 mm blue dashed line. The vertical lines indicate the 50 nm
wavelength shift of the blue peak.

are tightly connected. Further propagation leads to broaden-
ing of the spectrum centered around the blue-peak wave-
length [Fig. 6(b)]. We note the good agreement between the
numerically simulated spectra and the experimental spectrum
in Fig. 2 confirming that indeed our numerics are capturing
the correct physical processes. The first test we then per-
formed was to verify the tunability of the blue-peak wave-
length by simply changing the beam diameter before the fo-
cusing lens.

Indeed, as seen also in the experiments, such a variation
of the input beam leads to a 50 nm shift of the blue-peak
wavelength which is also associated with a corresponding
variation in the initial splitting velocity of the input pulse,
0y=2.0273X 10> m/s and ©vy=2.0333X10% m/s, respec-
tively. We investigated in more depth the link between the
blue-peak wavelength and the slow split-off pulse group ve-
locity by directly visualizing the temporal profile evolution
of the spectral region close to the blue peak. This was per-
formed by selecting the shaded spectral region in Fig. 7 and
by then taking the Fourier transform of the corresponding
complex spectral amplitude. By performing this operation on
the spectra at various propagation distances it is possible to
follow the evolution of the on-axis temporal profile of the
blue peak. The results are shown in Fig. 8 for various z and
the dashed line shows the position of the trailing pump pulse
peak maximum intensity (see also Fig. 5 for the pump pulse
temporal profiles). Just after the shock front has formed, at
z=5.2 mm, a sharp, few-cycle pulse appears. This very short
pulse arises from the coherent contribution of the continuum
of frequencies generated by the steep shock front. As propa-
gation ensues a second, broader, peak appears. By applying a
narrow-band filter to the spectra it is possible to determine
that this broader peak is associated with the blue peak in the
spectrum. Notably, we followed the spectral peak position
corresponding to the broad temporal peak and found that, for
increasing propagation distance, this peak shifts continuously
toward longer wavelengths. This is shown by the green
dashed line in Fig. 9. We note that the pump trailing split
pulse also exhibits a strong drift in its group velocity as it
propagates: the velocity of the pump peak has been explicitly
graphed in Fig. 9 as a dotted blue line. As can be seen, the
trailing peak velocity is continuously increasing: this may be
understood as a drift or relaxation of vy from the strongly
subluminal value generated just after the nonlinear focus to-
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FIG. 8. Evolution of the on-axis temporal profile of the blue
peak generated by the pump pulse profiles shown in Fig. 5. The
dashed line shows the position of the trailing pump pulse peak
maximum intensity.

ward vgz(dk/dw)":2.052>< 108 m/s. The trailing peak is
therefore accelerating and this in turn implies that the phase-
matching relation (1) predicts a continuously varying wave-
length for the blue peak. Using the numerically retrieved
values for vy we plot the expected blue peak wavelengths
calculated with Eq. (1): the result is the blue solid line in Fig.
9. In the same graph, the green dashed line shows the central
wavelength of the blue-peak versus z actually observed in the
numerical simulations. As can be seen these two curve are
nearly identical thus indicating that the spectral location and
evolution of the blue peak is fully determined by the group-
velocity properties and evolution of the trailing pump pulse.

IV. CONCLUSIONS

In conclusion measurements of ultrashort laser pulse fila-
mentation in bulk fused silica highlight the formation of an
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FIG. 9. (Color online) Dashed green line: central wavelength
evolution (versus propagation distance z) of the temporally broad
peaks in Fig. 8. Blue dotted line: group velocity evolution of the
trailing pump peak. Blue solid line: blue-peak wavelength calcu-
lated using the vy values (represented by the dotted line) in the
phase-matching relation (1).
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isolated blue peak. This may be explained by accounting for
the particular nature of the X waves associated with the fila-
ment. In the light of this understanding, we may fully control
SC generation in the blue and uv region of the spectrum: The
input-pulse temporal and spatial shaping will affect the fila-
ment pulse splitting velocity, or equivalently the X-wave ve-
locities, and will in turn modify the SC central wavelength
and extent. This will be of fundamental importance for opti-
mizing energy transfer to specific wavelengths and band-
widths according to specific needs, e.g., ultrashort pulse gen-
eration, white light spectroscopy or optimized Carrier-
Envelope-Offset monitoring in f-2f setups.
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APPENDIX: PROPAGATION EQUATIONS

The numerical simulations in this work were performed
by solving the unidirectional pulse propagation equations
(UPPE) [20,21]. The real electric field for the pulse may be
expressed as a plane-wave superposition

E(z,r, [) — E A(Z,]g, w)e—iwt+il;-r-+iK(w,k)z’

kw

(A1)

where the field propagates dominantly along the z axis and 7
is the transverse position vector. The effects of linear me-
dium dispersion on the propagating pulse are fully taken into
account  through the dispersion relation K(w,k)
=\Jw’e(w)/c?>—k?, which gives the z component of the wave
vector for an angular frequency w, and transverse wave vec-
tor k, for a plane wave propagating in a medium of linear
permittivity €(w). The spectral amplitudes A(z,k,w) of the
field evolve as functions of the propagation distance z solely
due to the medium nonlinearities, and obey the UPPE equa-
tion

) R
dA(z,k, w) _ LW~ f ei[‘“f‘k';‘K(‘”'k)z]P(z,r,t)d2rdt
oz 2K(w, k)

_ W i[wl—l;-f—K(w,k)z]J td2 dt
mmmfe Gr.)drdt.
(A2)

The nonlinear polarization P=¢€yAYE depends on the propa-
gating optical field through the medium nonlinearity, where
Ax(z,r,t) is the local modification of the medium’s optical
susceptibility caused by a combined action of the Kerr and
stimulated Raman effects
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Ax= 2nbn2|:(1 - f)E? +ffw R(DEX (1 - T)dT] . (A3)
0

Here, R ~sin(Q7)e 7 is the memory function of the stimu-
lated Raman effect.

The effects due to the free electrons generated by ioniza-
tion in the high intensity optical field are incorporated
through the current density J(z,r,#) modeled by Drude
model

PHYSICAL REVIEW A 78, 033825 (2008)

1 &2
3 (z,r,t) =— ;J(z,r, 1)+ —plz,r,0)E(z,r,1),

e

(Ad)

where the free electron density p(z,r,7) is generated by mul-
tiphoton ionization, while electron recombination and diffu-
sion is neglected on the femtosecond time scales. Our current
density also includes a phenomenological component that
mimics the multiphoton ionization losses. Parameters of the
medium model were as in Ref. [19].
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