145 research outputs found

    Cognition visuelle chez l'abeille Apis mellifera : catégorisation par extraction de configurations spatiales et de concepts relationnels

    Get PDF
    Dans ce travail nous avons étudié la sophistication cognitive dont est capable l'abeille domestique Apis mellifera dans l'analyse de son environnement visuel. Grâce à la mise en place d'une procédure expérimentale d'apprentissage permettant de mettre en évidence les performances fines de discrimination visuelle des abeilles, nous avons étudié la classification de stimuli visuels par catégorisation et formation de concepts. Dans le premier cas, les abeilles groupent des objets visuels en fonction de leur appartenance à une catégorie définie par une similarité perceptive; dans le deuxième cas, les abeilles regroupent les stimuli visuels à partir de règles abstraites (ex: 'plus grand que') et non de leurs propriétés physiques. Nous avons étudié en particulier la catégorisation de stimuli sur la base d'une configuration de type " visage ". Nous montrons que cet insecte peut extraire les relations entre les éléments d'un visage schématique et les combiner de façon à définir une catégorie. Ainsi, la présence de cette configuration permet de traiter de nouveaux stimuli comme appartenant à la catégorie d'intérêt. L'utilisation de configuration pour reconnaître des objets visuels semble être naturellement utilisée par l'abeille et n'est donc pas seulement induite par un entraînement spécifique. Nous avons par ailleurs étudié l'acquisition par l'abeille de concepts relationnels de nature spatiale tels que " au-dessus " ou " en-dessous ", indépendamment des éléments impliqués dans ces relations. L'abeille s'est de plus montrée capable d'associer deux concepts différents (relation spatiale et différence entre les éléments impliqués dans la relation) dans une règle permettant d'obtenir une récompense, transférable à de nouveaux stimuli physiquement très différents. Ces résultats mettent en évidence un niveau d'analyse et d'abstraction insoupçonné pour un invertébré et ouvrent le débat sur l'architecture neurale minimale requise pour atteindre une telle sophistication cognitive.In this work we studied the cognitive sophistication reached by the honeybee Apis mellifera when analysing its visual environment. Thanks to a new-designed learning protocol allowing better performance of bees' visual discrimination, we studied visual stimuli classification by categorization and concept formation. In the first case, bees grouped visual objects into classes defined by perceptual similarity; in the second case, bees extract abstract rules from visual stimuli (e.g. 'bigger than') instead of their specific physical properties. We studied in particular stimuli categorization based on a "face-like" configuration. We show that this insect can extract relationships between the elements of a schematic face and combine them to define a category. Thus, novel stimuli presenting this configuration would be process as member of the category of interest. Moreover, bees seem to naturally use configuration to recognize visual objects. This processing is thus not only inducing by our training procedure. We also studied the bees' acquisition of spatial relational concepts such as "above" or "below", regardless of the elements involved in these relationships. The bee has, in addition, shown its ability to combine two different concepts (spatial relationship and difference between the elements involved in the relationship) in a rule in order to obtain a reward. This rule is transferable to novel physically different stimuli. These results demonstrate an unsuspected level of analysis and abstraction in an invertebrate and open debate on the neural minimum architecture required to achieve such cognitive complexity

    Counting insects.

    Get PDF
    When counting-like abilities were first described in the honeybee in the mid-1990s, many scholars were sceptical, but such capacities have since been confirmed in a number of paradigms and also in other insect species. Counter to the intuitive notion that counting is a cognitively advanced ability, neural network analyses indicate that it can be mediated by very small neural circuits, and we should therefore perhaps not be surprised that insects and other small-brained animals such as some small fish exhibit such abilities. One outstanding question is how bees actually acquire numerical information. For perception of small numerosities, working-memory capacity may limit the number of items that can be enumerated, but within these limits, numerosity can be evaluated accurately and (at least in primates) in parallel. However, presentation of visual stimuli in parallel does not automatically ensure parallel processing. Recent work on the question of whether bees can see 'at a glance' indicates that bees must acquire spatial detail by sequential scanning rather than parallel processing. We explore how this might be tested for a numerosity task in bees and other animals. This article is part of a discussion meeting issue 'The origins of numerical abilities'

    Merging of long-term memories in an insect

    Get PDF
    © 2015 Elsevier Ltd All rights reserved.Research on comparative cognition has largely focused on successes and failures of animals to solve certain cognitive tasks, but in humans, memory errors can be more complex than simple failures to retrieve information [1, 2]. The existence of various types of "false memories," in which individuals remember events that they have never actually encountered, are now well established in humans [3, 4]. We hypothesize that such systematic memory errors may be widespread in animals whose natural lifestyle involves the processing and recollection of memories for multiple stimuli [5]. We predict that memory traces for various stimuli may "merge," such that features acquired in distinct bouts of training are combined in an animal's mind, so that stimuli that have never been viewed before, but are a combination of the features presented in training, may be chosen during recall. We tested this using bumblebees, Bombus terrestris. When individuals were first trained to a solid single-colored stimulus followed by a black and white (b/w)-patterned stimulus, a subsequent preference for the last entrained stimulus was found in both short-term- and long-term-memory tests. However, when bees were first trained to b/w-patterned stimuli followed by solid single-colored stimuli and were tested in long-term-memory tests 1 or 3 days later, they only initially preferred the most recently rewarded stimulus, and then switched their preference to stimuli that combined features from the previous color and pattern stimuli. The observed merging of long-term memories is thus similar to the memory conjunction error found in humans [6].K.H. was supported by a PhD studentship provided by the National Environmental Research Council (NE/H525089/1), and L.C. is supported by a Royal Society Wolfson Research Merit Award (WM130106)

    Visual Associative Learning in Restrained Honey Bees with Intact Antennae

    Get PDF
    A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER). Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee

    Exploring the predation of UK bumblebees (Apidae, Bombus spp.) by the invasive pitcher plant Sarracenia purpurea: examining the effects of annual variation, seasonal variation, plant density and bumblebee gender

    Get PDF
    Invasive carnivorous plant species can impact the native invertebrate communities on which they prey. This article explores the predation of native UK bumblebees (Bombus spp.) by the invasive pitcher plant species Sarracenia purpurea and discusses the potential effect of S. purpurea on native bumblebees. Specifically, it evaluates whether the extent to which bumblebees are captured varies (i) over successive years, (ii) across June and July, (iii) with density of distribution of pitchers or (iv) with bumblebee gender. Pitcher contents were examined from an established population of Sarracenia purpurea growing in Dorset, UK. Results show that the total extent to which bumblebees were captured differed over the years 2012–2014 inclusive. A 1-year study in 2013 showed that more bumblebees were caught in July than in June and more bumblebees were captured when pitchers grew at high density. Results from 2013 also showed that more pitchers caught more than one bumblebee than would be expected based on a normal probability distribution and that this phenomenon affects female and male bumblebees equally. We discuss possible reasons for these results including that the bumblebees may be using S. purpurea as a resource. Further work is required to establish the exact underpinning mechanisms and the relative roles of plant and bumblebee behaviour within the relationship. Such interaction complexity may have consequences for consideration in invasive carnivorous plant management
    • …
    corecore