198 research outputs found

    Double-walled carbon nanotubes trigger IL-1ÎČ release in human monocytes through Nlrp3 inflammasome activation

    Get PDF
    Because of their outstanding physical properties, carbon nanotubes (CNTs) are promising new materials in the field of nanotechnology. It is therefore imperative to assess their adverse effects on human health. Monocytes/macrophages that recognize and eliminate the inert particles constitute the main target of CNTs. In this article, we report our finding that double-walled CNTs (DWCNTs) synergize with Tolllike receptor agonists to enhance IL-1ÎČ release in human monocytes. We show that DWCNTs–induced IL-1ÎČ secretion is exclusively linked to caspase-1 and to Nlrp3 inflammasome activation in human monocytes. We also establish that this activation requires DWCNTs phagocytosis and potassium efflux, but not reactive oxygen specied (ROS) generation. Moreover, inhibition of lysosomal acidification or cathepsin-B activation reduces DWCNT-induced IL-1ÎČ secretion, suggesting that Nlrp3 inflammasome activation occurs via lysosomal destabilization. Thus, DWCNTs present a health hazard due to their capacity to activate Nlrp3 inflammasome, recalling the inflammation caused by asbestos and hence demonstrating that they should be used with caution. From the Clinical Editor: This is a very important biosafety/toxicity study regarding double walled carbon nanotubes. The investigators demonstrate that such nanotubes do represent a health hazard due to their capacity to activate Nlrp3 inflammasome, resembling the inflammation caused by asbestos. While further study of this phenomenon is definitely needed, the above findings clearly suggest that special precautions need to be taken when applying these nanoparticles in human disease research

    Non-purged voltammetry explored with AGNES

    Get PDF
    The reduction of oxygen increases pH in the surroundings of an electrode. A theoretical model estimates the steady-state pH profile from the surface of the electrode up to the bulk solution. A very simple formula predicts that, in non-deareated solutions, for bulk pH-values between 4.0 and 10.0, the corresponding surface pH could be as high as 10.3, regardless of the thickness of the diffusion layer and composition of the sample (except if it has a buffering capacity). For bulk pH lower than 3.0 or higher than 10, pH increases are negligible. Less steep pH-profiles are obtained with buffers (such as MOPS 0.01 M or MES 0.01 M). The change in surface pH modifies the local speciation and hinders the standard interpretation of voltammetric responses. The electroanalytical technique Absence of Gradients and Nernstian Equilibrium Stripping (AGNES), implemented with Screen Printed Electrodes (SPE), provides experimental insights into this phenomenon. AGNES probes the free metal concentration at the electrode surface, from which the surface pH can be estimated for systems of known composition. These estimations agree with the theoretical model for the assayed systems. Additionally, the quantification of the bulk free Zn2+ and Cd2+ concentrations with specific modifications of AGNES for non-purged synthetic solutions is discussed. In general, more accurate determinations of the bulk free metal concentrations in non-purged solutions are expected: i) when the calibration is performed in a medium where the pH increase induces similar changes in the surface free metal concentration and in the sample solution and ii) when the system is more buffered.This work was financially supported by the Spanish Ministry of Education and Science (Projects CTQ2009-07831, CTM2009-14612 and CTM2012-39183), from the “Comissionat per a Universitats i Recerca del Departament d'Innovació, Universitats i Empresa de la Generalitat de Catalunya”

    Calibration procedures and first data set of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags

    Get PDF
    In-situ observation of the marine environment has traditionally relied on ship-based platforms. The obvious consequence is that physical and biogeochemical properties have been dramatically undersampled, especially in the remote Southern Ocean (SO). The difficulty in obtaining in situ data represents the major limitations to our understanding, and interpretation of the coupling between physical forcing and the biogeochemical response. Southern elephant seals (Mirounga leonina) equipped with a new generation of oceanographic sensors can measure ocean structure in regions and seasons rarely observed with traditional oceanographic platforms. Over the last few years, seals have allowed for a considerable increase in temperature and salinity profiles from the SO. However we were still lacking information on the spatio-temporal variation of phytoplankton concentration. This information is critical to assess how the biological productivity of the SO, with direct consequences on the amount of CO2 "fixed" by the biological pump, will respond to global warming. In this research program, we use an innovative sampling fluorescence approach to quantify phytoplankton concentration at sea. For the first time, a low energy consumption fluorometer was added to Argos CTD-SRDL tags, and these novel instruments were deployed on 27 southern elephant seals between 25 December 2007 and the 4 February 2011. As many as 3388 fluorescence profiles associated with temperature and salinity measurements were thereby collected from a vast sector of the Southern Indian Ocean. This paper address the calibration issue of the fluorometer before being deployed on elephant seals and present the first results obtained for the Indian Sector of the Southern Ocean.This in situ system is implemented in synergy with satellite ocean colour radiometry. Satellite-derived data is limited to the surface layer and is restricted over the SO by extensive cloud cover. However, with the addition of these new tags, we're able to assess the 3 dimension distribution of phytoplankton concentration by foraging southern elephant seals. This approach reveals that for the Indian sector of the SO, the surface chlorophyll a (chl a) concentrations provided by MODIS were underestimated by a factor of the order of 2–3 compared to in situ measurements. The scientific outcomes of this program include an improved understanding of both the present state and variability in ocean biology, and the accompanying biogeochemistry, as well as the delivery of real-time and open-access data to scientists

    Looking for a needle in a haystack: inference about individual fitness components in a heterogeneous population

    Get PDF
    Studies of wild vertebrates have provided evidence of substantial differences in lifetime reproduction among individuals and the sequences of life history ‘states’ during life (breeding, nonbreeding, etc.). Such differences may reflect ‘fixed’ differences in fitness components among individuals determined before, or at the onset of reproductive life. Many retrospective life history studies have translated this idea by assuming a ‘latent’ unobserved heterogeneity resulting in a fixed hierarchy among individuals in fitness components. Alternatively, fixed differences among individuals are not necessarily needed to account for observed levels of individual heterogeneity in life histories. Individuals with identical fitness traits may stochastically experience different outcomes for breeding and survival through life that lead to a diversity of ‘state’ sequences with some individuals living longer and being more productive than others, by chance alone. The question is whether individuals differ in their underlying fitness components in ways that cannot be explained by observable ‘states’ such as age, previous breeding success, etc. Here, we compare statistical models that represent these opposing hypotheses, and mixtures of them, using data from kittiwakes. We constructed models that accounted for observed covariates, individual random effects (unobserved heterogeneity), first-order Markovian transitions between observed states, or combinations of these features. We show that individual sequences of states are better accounted for by models incorporating unobserved heterogeneity than by models including first-order Markov processes alone, or a combination of both. If we had not considered individual heterogeneity, models including Markovian transitions would have been the best performing ones. We also show that inference about age-related changes in fitness components is sensitive to incorporation of underlying individual heterogeneity in models. Our approach provides insight into the sources of individual heterogeneity in life histories, and can be applied to other data sets to examine the ubiquity of our results across the tree of life

    Étude de comprĂ©hension des plans d’action communautaires de lutte Ă  la COVID-19 : impacts sur les indicateurs de suivi de la pandĂ©mie

    Get PDF
    Les expĂ©riences passĂ©es lors des Ă©pidĂ©mies d’Ebola, de SARS ou Zika ont montrĂ© que les communautĂ©s engagĂ©es et impliquĂ©es dans la construction des solutions coopĂ©reraient davantage pour endiguer les crises. L’Organisation mondiale de la santĂ© (OMS), le Fonds des Nations Unies pour l’enfance (UNICEF), la FĂ©dĂ©ration internationale des SociĂ©tĂ©s de la Croix-Rouge et du Croissant-Rouge (FICR) et la communautĂ© scientifique recommandent ainsi l’intĂ©gration des communautĂ©s dans la prĂ©vention et le contrĂŽle de la pandĂ©mie de COVID-19. Le prĂ©sent rapport recourt Ă  l’approche whole-of-society qui reconnaĂźt l’apport essentiel des groupes citoyens, des organismes communautaires et des rĂ©seaux inter-organisationnels Ă  la rĂ©ponse aux crises ainsi que l’approche de la gestion de crise en rĂ©seau qui appelle Ă  une gouvernance collaborative et Ă  diffĂ©rents niveaux de rĂ©silience
    • 

    corecore