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Abstract
Aim: Deep‐diving cetaceans are oceanic species exposed to multiple anthropo‐
genic pressures including high intensity underwater noise, and knowledge of their 
distribution is crucial to manage their conservation. Due to intrinsic low densities, 
wide distribution ranges and limited presence at the sea surface, these species are 
rarely sighted. Pooling data from multiple visual surveys sharing a common line‐
transect methodology can increase sightings but requires accounting for hetero‐
geneity in protocols and platforms.
Location: North Atlantic Ocean and Mediterranean Sea.
Time period: 1998 to 2015.
Major taxa: Ziphiidae; Physeteriidae; Kogiidae.
Methods: About 1,240,000 km of pooled effort provided 630 sightings of ziphiids, 
836 of physeteriids and 106 of kogiids. For each taxon, we built a hierarchical 
model to estimate the effective strip width depending on observation conditions 
and survey types. We then modelled relative densities in a generalized additive 
modelling framework. Geographical predictions were limited to interpolations 
identified with a gap analysis of environmental space coverage.
Results: Deeper areas of the North Atlantic gyre were mostly environmental ex‐
trapolation in the predictions, thereby highlighting gaps in sampling across the dif‐
ferent surveys. For the three species groups, the highest relative densities were 
predicted along continental slopes, particularly in the western North Atlantic 
Ocean where the Gulf Stream creates dynamic frontal zones and eddies.
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1  | INTRODUC TION

Deep‐diving cetaceans, defined here as beaked whales (family 
Ziphiidae; e.g., Ziphius cavirostris, Hyperoodon spp. and Mesoplodon 
spp.) and sperm whales (families Physeteridae and Kogiidae), are 
distributed worldwide. They are oceanic species that feed in deep 
waters during long dives (close to or even longer than an hour; 
Perrin, Würsig, & Thewissen, 2009). Due to their offshore habitat 
and the short time they remain visible at the sea surface, little is 
known about their synoptic distribution (especially for kogiids and 
ziphiids). Moreover, these species are threatened by anthropogenic 
activities, including bycatch, debris ingestion, ship collisions (Carrillo 
& Ritter, 2010; Madsen, Soto, Tyack, & Johnson, 2014; Unger et al., 
2016) and any activity producing high intensity noise (e.g., military 
sonars, seismic guns or techniques used on large maritime construc‐
tion projects; Stone & Tasker, 2006). Recent studies have demon‐
strated the sensitivity of deep‐diving cetaceans, and particularly 
beaked whales, to underwater noise pollution, with a number of 
unusual stranding events associated with the use of military so‐
nars (D’Amico et al., 2009; Fernández et al., 2005). To mitigate the 
impact of these activities, accurate knowledge of the distribution 
and abundance of deep‐diving cetaceans is crucial to marine spa‐
tial planning to inform management measures at a national scale 
(Douvere, 2008). International initiatives, such as Important Marine 
Mammal Areas (IMMAs, Corrigan et al., 2014), are needed for these 
highly mobile species. However, any single survey often yields only 
a handful of sightings that are then restricted to areas too small 
compared to the large geographical scale needed for effective con‐
servation planning.

Data‐assembling is increasingly used to model habitat prefer‐
ences of cetaceans at the basin scale (Cañadas et al., 2018; Roberts 
et al., 2016; Rogan et al., 2017). Due to the various protocols, 

platform types and observation heights, species detectability and 
data quality vary with surveys. In addition, each survey may not 
collect the same information, particularly with regard to observa‐
tion conditions. Some surveys only record Beaufort sea‐state while 
others record additional parameters that also influence species de‐
tection, such as sun glare, cloud coverage or wave height. In the 
process of synthesizing different datasets, only variables common 
across all datasets can generally be retained in a broad‐scale analy‐
sis, which nevertheless needs to account for heterogeneity. Finally, 
to make basin‐wide predictions from the assemblage of a number 
of local surveys, identifying areas of environmental extrapolations 
is crucial to bolster confidence in predicted maps (Mannocci et al., 
2018).

Our study aims to understand how deep‐diving cetaceans are dis‐
tributed at a large scale and to highlight areas of high relative densi‐
ties for conservation purposes. To model the habitats of deep‐diving 
cetaceans at a large scale, we assembled data from different surveys 
in the North Atlantic Ocean and the Mediterranean Sea from 15 orga‐
nizations. To take into account heterogeneity in sighting protocols, we 
built a hierarchical model to estimate the effective strip width (ESW) 
across platforms and observation conditions. We then modelled rela‐
tive densities of three deep‐diving cetacean taxa with generalized ad‐
ditive models (GAMs). Finally, we performed a gap analysis (Jennings, 
2000; Mannocci et al., 2018) to assess the reliability of the predictions 
outside the surveyed area.

2  | METHODS

2.1 | Data origin

The study area encompassed the North Atlantic Ocean and the 
Mediterranean Sea from the Guiana Plateau to Iceland, excluding the 

Main conclusions: Pooling a large number of surveys provided the first basin‐wide 
models of distribution for deep‐diving cetaceans, including several data‐deficient 
taxa, across the North Atlantic Ocean and the Mediterranean Sea. These models can 
help the conservation of elusive and poorly known marine megafauna.
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Baltic and Black Seas, the Gulf of Mexico and the Hudson Bay, both 
because of an absence of effort data and of ecological and environ‐
mental differences (Figure 1a; Supporting Information Appendix S1). 
Four sub‐regions were defined in the study area (Table 1; Figure 1a): 
the north‐east Atlantic Ocean (NE‐ATL), the north‐west Atlantic 
Ocean (NW‐ATL), the tropics and the Mediterranean Sea (MED).

We assembled visual shipboard and aerial surveys performed by 
15 independent organizations in the North Atlantic Ocean and the 
Mediterranean Sea between 1998 and 2015 (Figure 1; survey‐spe‐
cific information are detailed in Supporting Information Appendix 
S2). Except for the jncc‐esas surveys that use a 300‐m strip‐transect 
methodology, all surveys used line‐transect methodologies that 
correct for non‐detection bias with the estimation of an ESW from 
the measurement of the perpendicular distances to the sightings 
(Buckland, Rexstad, Marques, & Oedekoven, 2015; see below).

To account for the difficulty in identifying deep‐diving cetaceans 
to the species level (e.g., genera Mesoplodon, Kogia), we pooled 
species into three groups: (a) beaked whales, consisting of Cuvier’s 
beaked whales (Ziphius cavirostris), mesoplodonts (Mesoplodon spp.) 
and northern bottlenose whales (Hyperoodon ampullatus); (b) sperm 
whales (Physeter macrocephalus); and (c) kogiids, including pygmy 
(Kogia breviceps) and dwarf sperm whales (K. sima).

2.2 | Data processing

2.2.1 | Data‐assembling

All survey datasets were standardized for units and formats (e.g., 
date, time and coordinates) and aggregated into a single common 
dataset. A specific coordinate projection encompassing the entire 

F I G U R E  1   Study area divided into sub‐regions showing assembled survey effort (a), along with the beaked whale (b), sperm whale (c) and 
kogiid (d) sightings recorded during all surveys. The blue polygon delineates overall study area and other polygons delineate sub‐regions. 
Surveys were carried out along transects following a line‐transect methodology (survey details in Supporting Information Appendix S1). 
Sightings were classified by group sizes with each point representing one group of individuals and point size representing the number of 
animals in a group. MED = Mediterranean Sea; NE‐ATL = north‐east Atlantic Ocean; NW‐ATL = north‐west Atlantic Ocean  [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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survey area was used for accurate distance computations (Albers 
equal‐area conic defined from https://projectionwizard.org). Effort 
data were linearized and divided into 5‐km segments using arcGIs 
10.3 (ESRI, 2016) and the MarIne GeospatIal ecoloGy tools software 
(Roberts, Best, Dunn, Treml, & Halpin, 2010). The segment length 
represented a trade‐off value across varying survey transect lengths, 
for example, aerial surveys had transect lengths of up to 100 km while 
shipboard surveys were often much shorter. Finally, for each species 
group, sightings were linked to their respective 5‐km segments.

Encounter rates were calculated in each sub‐region as: (number 
of encounters/total distance travelled) × 100.

2.2.2 | Environmental variables

In habitat models, we tested the static and dynamic variables that 
were expected to influence the distributions of deep divers (Table 2). 
All variables were resampled at a 0.25° resolution because of the 
very large size of the study area and the spatial resolution of the 
variables (Table 2; Supporting Information Appendix S3). Spatial 
gradients of sea surface temperature (SST) were calculated as the 
difference between the minimum and maximum SST values in an 8‐
pixel buffer around a given pixel. Net primary production (NPP) was 
used as a proxy for prey availability.

Dynamic variables, which relate to the movements of water masses 
or prey availability, were computed at a monthly resolution, that is, aver‐
aged over the 29 days prior to each sampled day to avoid gaps in remote 
sensing oceanographic variables. They were used in addition to static 
variables because they reveal the presence of time‐stable structures 
such as temperature gradients or eddies when variables are averaged.

2.2.3 | Effective strip width estimation

Line‐transect surveys are commonly used to estimate cetacean 
abundance (Buckland et al., 2015; Hammond et al., 2013). A key 

parameter to estimate this abundance is the ESW, which corrects 
the decreasing detection of animals with distance from the track‐
line. ESW is expected to depend on survey platform height, platform 
type, sea‐state, species, etc… (Buckland et al., 2015).

ESW estimation was a key step in the data‐assembling process to 
take into account heterogeneity in effort per segment in the models 
and to directly compare the different surveys (Hedley & Buckland, 
2004). ESWs are generally estimated for each survey (i.e., no pool‐
ing of information) using DIstance software (Buckland et al., 2015; 
Thomas et al., 2010). However, for deep‐diving cetaceans, the ma‐
jority of surveys contained insufficient sightings to allow survey‐
specific detection functions to be fitted. Consequently, for each 
species group, we pooled sightings from the various surveys, taking 
into account survey heterogeneity. We built a hierarchical model in 
which survey identity was included as a random effect.

In conventional distance sampling (Buckland et al., 2015; 
Marques & Buckland, 2003), factors such as the characteristics of 
the species being surveyed, search methods, search platform, envi‐
ronmental conditions can all affect ESW estimation. However, the 
different datasets did not always contain this information, especially 
regarding observation conditions. All surveys recorded environmen‐
tal data such as Beaufort sea‐state, cloud coverage and sun glare, 
although Beaufort sea‐state was the only parameter recorded by all 
of them. Platform type, observation height and Beaufort sea‐state 
were used as covariates in the hierarchical model.

Truncation distance w was first determined as the 95th percen‐
tile of the set of perpendicular distances for each species group, that 
is, the 5% most distant sightings were discarded from the analysis 
(Buckland et al., 2001, p. 16). Then, we created classes to pool the 
different surveys; namely platform type (plane or boat), observa‐
tion height (e.g., 0–5 m; 5–10 m…) and Beaufort sea‐state (0–1; 1–2; 
2–3 and 3–4; data collected beyond a Beaufort sea‐state 4 being 
removed from the analysis). Hierarchical modelling was then per‐
formed in R 3.3.1 (R Core Team, 2016) in a Bayesian framework 

TA B L E  1   Effort performed by platform type or Beaufort sea‐state for all surveys in the North Atlantic Ocean and the Mediterranean Sea

Sectors
Total survey effort 
(km and %)

Total aerial 
effort (km)

Total shipboard 
effort (km)

Total effort by Beaufort sea‐state class (km)

0–1 1–2 2–3 3–4 4–7

NE‐ATL 469,000 70,000 399,000 77,000 118,000 136,000 85,000 53,000

37%

NW‐ATL 557,000 546,000 11,000 43,000 121,000 199,000 132,000 62,000

45%

MED 195,000 87,000 109,000 92,000 70,000 27,000 6,000 800

16%

TROPICS 19,000 15,000 4,000 11,000 3,000 4,000 2,000 400

2%

STUDY AREA 1,240,000 718,000 522,000 222,000 312,000 365,000 225,000 116,000

58% 42% 18% 25% 30% 18% 9%

Note. This table presents the total effort conducted in each sector broken down by platform type and Beaufort sea‐state. Beaufort sea‐state values 
reported with decimals in the surveys were rounded up. For the analyses, all segments with Beaufort sea‐state >4 were excluded. NE‐ATL = north‐east 
Atlantic Ocean; NW‐ATL = north‐west Atlantic Ocean; MED = Mediterranean Sea.

https://projectionwizard
.org
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using jaGs version 4‐6 and package “rjags” (jags model in Supporting 
Information Appendix S4; Plummer, 2016; Royle & Dorazio, 2008).

For each taxon, perpendicular distances of sightings were used 
to estimate a detection function with a hazard key. For a sighting 
i made during survey s at height j under Beaufort sea‐state k, let 
di
jks

 denote the perpendicular distance. The detection probability of 
sighting i is:

where βj0 and βj1 are respectively random intercept and slope pa‐
rameters for the effect of platform height; and αs and �s are survey 
random effects. Bivariate random effects were specified with a 
Cholesky decomposition and using priors for the Cholesky factors 
from Kinney and Dunson (2008). We used half Student‐t distribu‐
tions with three degrees of freedom and scale set to 1.5 as priors 
for dispersion parameters, and standard normal priors for all other 
parameters. Four chains were run with a warmup of 10,000 itera‐
tions, followed by another 10,000 iterations (with a thinning factor 

of 10). Parameter convergence was assessed with Gelman–Rubin R̂ 
statistics. Posterior inferences were based on the pooled sample of 
4,000 values (1,000 per chain).

The advantage of setting a hierarchical model to estimate detec‐
tion functions is to borrow strength across the different datasets to 
increase the precision of estimates. For each combination of survey–
platform type–observation height–Beaufort sea‐state, estimated 
detection functions are shrunk towards a common detection func‐
tion (itself estimated from the data) according to the available data 
corresponding to this particular combination of survey–platform 
type–observation height–Beaufort sea‐state. If, for a given combi‐
nation of parameters, there were few sightings, the estimated de‐
tection function was very close to the common detection function, 
whereas if there were enough data, the estimated detection func‐
tion could deviate from this common function. Upon model fitting 
and successful parameter estimation, the ESW for each combination 
of survey–platform type–observation height–Beaufort sea‐state 
was computed:

(1)

⎧
⎪⎨⎪⎩

ps
ijk
=gs(dijk)=1−exp (− (

dijk

�jks
)
−�s

)

log
�
�jks

�
=�j0+�j1× k+�s

(2)ESWjks=∫
w

0

gs (x) dx=∫
w

0

[
1−exp (− (

x

e�j0+�j1×k+�s
)
−�s

)

]
dx

TA B L E  2   Candidate environmental predictors used for the habitat modelling

Environmental variable Original resolution Source Justification

Physiographic

Depth (m) 30 arc sec A Deep‐divers feed on squids and fish in the 
deep water column

Slope (°) 30 s arc A Associated with currents, high slopes induce 
prey aggregation or enhanced primary 
production

Surface area of canyons and seamounts in 
a 0.25° cell (km2)

30 s arc B Deep‐divers are often associated with canyon 
and seamount structures; the variable 
indicates the proportion of this habitat in each 
cell

Oceanographic

Mean of SST (°C) 0.2°, daily C Variability over time and horizontal gradients 
of SST reveal front locations, potentially 
associated with prey aggregations or 
enhanced primary production

Standard error of SST (°C) 0.2°, daily C

Mean gradient of SST (°C) 0.2°, daily C

Mean of SSH (m) 0.25°, daily D High SSH is associated with high mesoscale 
activity and enhanced prey aggregation or 
primary production

Standard deviation of SSH (m) 0.25°, daily D

Mean of EKE (m2/s2) 0.25°, daily D High EKE relates to the development of eddies 
and sediment resuspension which induce a 
prey aggregation

Standard error of EKE (m2/s2) 0.25°, daily D

Mean of NPP (mgC/m2/day) 9 km, 8 days E Net primary production as a proxy of prey 
availability

Note. All variables were resampled at a 0.25° resolution. A: Depth and slope were derived from the GEBCO‐08 30 arc‐second database (https://www.
gebco.net/); 30 arc‐seconds is approximately equal to 0.008°. B: Surface area per cell was calculated in arcGIs 10.3 from the shapefil e of canyons and 
seamounts provided by Harris, Macmillan‐Lawler, Rupp, and Baker (2014). C: The mean, standard error and gradient of sea surface temperature (SST) 
were calculated from the GHRSST Level 4 CMC SST v.2.0 model (Canada Meteorological Centre  2012, https://podaac.jpl.nasa.gov/dataset/
CMC0.2deg‐CMC‐L4‐GLOB‐v2.0). D: The Aviso ¼° DT‐MADT geostrophic currents database was used to compute mean and standard deviation of sea 
surface height (SSH) and eddy kinetic energy (EKE; https://www.aviso.altimetry.fr/en/data/products/sea‐surface‐height‐products/global/madt‐h‐uv.
html). E: Net primary production (NPP) was derived from SeaWIFS and Aqua models using the vertically generalized production model (VGPM; http://
orca.science.oregonstate.edu/1080.by.2160.8day.hdf.vgpm.s.chl.a.sst.php).

https://www.gebco.net/
https://www.gebco.net/
https://podaac.jpl.nasa.gov/dataset/CMC0.
https://podaac.jpl.nasa.gov/dataset/CMC0.
deg-CMC-L4-GLOB-v2.0
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-h-uv.html
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-h-uv.html
http://orca.science.oregonstate.edu/1080.by.2160.8day.hdf.vgpm.s.chl.a.sst.php
http://orca.science.oregonstate.edu/1080.by.2160.8day.hdf.vgpm.s.chl.a.sst.php
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The posterior mean value of estimated ESW was then allocated 
to each segment with respect to species group, survey, platform 
type, sea‐state and observation height class.

2.3 | Habitat modelling

To model habitat preferences of deep‐divers, we fitted GAMs 
(Hastie & Tibshirani, 1986; Wood, 2006) with a Tweedie distribu‐
tion to account for over‐dispersion (Foster & Bravington, 2013) with 
the “mgcv” R package (R 3.3.1. version; Wood, 2013). GAMs extend 
generalized linear models to allow for smooth nonlinear functions 
of predictor variables (Hastie & Tibshirani, 1986; Wood, 2006). The 
mean number of individuals per segment µ was modelled with a log‐
arithmic link function:

where f(Xp) are nonparametric smooth functions (thin plate re‐
gression splines) of the covariates and α is the intercept (Hastie & 
Tibshirani, 1986). To attenuate the scope for over‐fitting, the maxi‐
mum number of knots was limited to 4 (mgcv parameter k = 4; Wood, 
2006). An offset equal to segment length multiplied by twice the 
ESW was included (except for the JNCC‐ESAS surveys in which only 
one side of the vessel was surveyed). We removed combinations of 
variables with Spearman partial correlation coefficients higher than 
|.7| (Dormann et al., 2013; Mannocci et al., 2014) and tested all mod‐
els with combinations of one to four variables. A maximum of four 
covariates per model was used to avoid excessive complexity of 
models and difficulty in their interpretation (Mannocci et al., 2014). 
Model selection was done with the Akaike information criterion (AIC, 
the lower the better; Anderson & Burnham, 2002) and Akaike model 
weight (akaike.weights function from “qpcR” package; Spiess, 2014).

A key assumption of line‐transect surveys is that animals on the 
trackline are always detected (Buckland et al., 2001). However, this 
assumption is not met with diving species and trackline detection 
probability g(0) needs to be accounted for (Barlow, 2015). Observers 
on a plane spend less time in a given area and the following inequal‐
ity is expected: gboat

(
0
)
>gplane

(
0
)
. Thus a segment of effort with 

zero sighting of deep‐divers is more likely to be a false absence 
(non‐detection of a diving animal present on the trackline) if that 
segment comes from a plane survey rather than a boat survey. As 
detection probability g(0) was not available for every survey and is 
expected to differ between platforms, we calculated the ratio of g(0) 
between the plane and boat platforms from Roberts et al. (2016) and 
obtained a ratio of approx. 1/5 for beaked whales, approx. 2/5 for 
sperm whales and approx. 1/3 for kogiids. These crude ratios were 
then used to weight plane segments with zero sightings when fitting 
GAMs. While this method does not fully correct for availability bias, 
it down‐weights zeroes from plane surveys.

We fitted “year‐round” models as the studied taxa have been re‐
ported to show little or no seasonal variation in their habitats (e.g., 

McSweeney, Baird, & Mahaffy, 2007; Wimmer & Whitehead, 2004). 
We did not model yearly variations because of little temporal over‐
lap between surveys. Consequently, the year effect is confounded 
with survey heterogeneity.

Predictions of relative densities (in number of animals per km2) 
were provided at 0.25° resolution. There were not enough data to 
fit a model by month or by season (the number of sightings in winter 
was too low) and we therefore produced averaged maps over the 
entire time period. These predictive maps provided the expected 
distribution of beaked whales, sperm whales and kogiids according 
to static and monthly environmental conditions to highlight relation‐
ships with static (canyons and seamounts) and time‐stable struc‐
tures (temperature gradients or eddies).

Finally, coefficients of variation (CVs) were estimated for each 
0.25° pixel. CVs are a measure of the prediction uncertainty per cell, 
it is a standard error associated with the calculation of the predic‐
tion. Therefore, high CVs indicate high model uncertainties due to 
the lack of detection.

2.4 | Gap analysis

Even though more than 1,240,000 km of effort was pooled, exten‐
sive geographical gaps remained. Predictions in the middle of the 
Atlantic Ocean are from geographical extrapolation (Figure 1a) but 
not necessarily environmental extrapolations. The latter depends 
on the selected habitat models and covariates therein. We con‐
ducted a gap analysis on environmental space coverage to iden‐
tify areas where habitat models could produce reliable predictions 
outside survey blocks, that is, geographical extrapolation, whilst 
remaining within the ranges of surveyed conditions for the combi‐
nations of covariates selected by the models, that is, areas of en‐
vironmental interpolation (Jennings, 2000; Mannocci et al., 2018).

From the selected models for each taxon, we estimated the convex 
hull defined by the environmental data used to fit habitat models (here‐
after the calibration data). The convex hull of a set of points is the small‐
est convex envelop that contains all these points. We then assessed 
whether a prediction from a set of environmental covariates with a 
given model fell inside or outside this convex hull (Authier, Saraux, & 
Péron, 2016; King & Zeng, 2007). We used climatological predictors 
instead of monthly predictors to lessen the computational burden.

Due to the large amount of data (more than 280,000 points in 
the calibration dataset), convex hulls were estimated by random sub‐
sampling with the “WhatIf” R package (Stoll, King, & Zeng, 2014). 
We randomly extracted a fraction of the calibration dataset (10,000 
points) to estimate a convex hull and assess environmental extrap‐
olation in the prediction dataset. A combination of climatological 
predictor values that fall inside the convex hull corresponds to an 
interpolation. Combinations of climatological predictor values that 
were classified as interpolations were set aside but other combi‐
nations were retained and further tested against another random 
sample of 10,000 points from the calibration data. This procedure 
was carried out until the complete calibration dataset was examined.

(3)log(�)=�+
∑
p

f(Xp)
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The full procedure was conducted twice. In a simple approach, the 
full range of sampled variables was considered to identify all points of 
the whole study area where the actual combinations of environmental 
variables had been sampled in survey blocks. In a more “precaution‐
ary approach,” we excluded 5% of the extreme values of the sampled 
environmental variables to include in the interpolation areas only the 
points whose associated combinations of covariates fell within 95% of 
the core ranges sampled. This allowed the definition of two levels of 
confidence (hereafter “simple” and “precautionary”) in the predictions.

Finally, we produced maps delineating the extent of the simple 
and precautionary interpolation areas and overlaid them with the rel‐
ative density prediction maps to show areas with greater reliability.

3  | RESULTS

3.1 | Encounter rates

The survey pool represented a total of 1,240,000 km of on‐effort 
transects (i.e., following a transect at a specified speed and alti‐
tude with a specified level of visual effort) of which 58% were car‐
ried out by plane and 42% by boat (Figure 1a, Table 1). Effort data 
with a Beaufort sea‐state higher than 4, which represented 9% of 
the effort data, were removed from further analysis to only keep 
sightings collected during good to excellent detection conditions. 
Most sampling effort was performed in the north‐east (37%) and 
north‐west (45%) Atlantic Ocean. Surveys in the Mediterranean 
Sea and in the tropics represented respectively only 16% and 2% 
of total sampling effort.

A total of 630 sightings of beaked whales, 836 sightings of sperm 
whales and 106 sightings of kogiids, mainly distributed in the north‐
east and north‐west Atlantic Ocean (north of the 35°N latitude) and 
in the north‐west Mediterranean Sea, were assembled for the pres‐
ent study (Figure 1b–d).

Overall encounter rates were very low with 0.05 sightings/100 km 
for beaked whales, 0.07 sightings/100 km for sperm whales and <0.01 
sightings/100 km for kogiids (Table 3). The highest encounter rates 
were recorded in the tropics for all three species groups, particularly for 
kogiids. There were no sightings of kogiids in the Mediterranean Sea.

3.2 | Effective strip width

Estimated ESWs varied across surveys and platform type and were 
on average narrower in aerial than shipboard surveys (Figure 2). This 
is probably because aerial observers are more restricted to record‐
ing animals below the plane while shipboard observers can look 

further afield. ESWs were generally larger and more consistent be‐
tween surveys using the same platform type for sperm whales than 
for beaked whales. There were not enough kogiid sightings to esti‐
mate an ESW for each survey and particularly for shipboard surveys; 
consequently, we pooled all aerial surveys and estimated an ESW of 
1.1 km that was then applied to all surveys (shipboard and aerial).

The outcomes from the hierarchical model were consistent with 
expectations (Supporting Information Figure S4.1): a decrease in 
Beaufort sea‐state (less wind‐sea) resulted in a larger ESW (milder 
non‐detection bias).

3.3 | Habitat modelling

For each species group, selected variables, explained deviances and 
Akaike weights are shown in Table 4.

3.3.1 | Beaked whales

Highest relative densities were found at depths of c. 1,500 m, high 
values of slopes and SST and intermediate NPP. This resulted in high 
predicted relative densities of beaked whales along steep slope areas 
associated with deep depths and high gradients of temperature, par‐
ticularly on the western side of the Atlantic Ocean. The lowest rela‐
tive densities were predicted in the Mediterranean Sea (Figure 3b).

The gap analysis identified areas where the combination of the 
four variables selected by the best model had not been sampled. 
Reliable predictions were available for 94% of the study area under 
the simple approach and only 53% under the precautionary ap‐
proach (Figure 3b,c). This discrepancy was mostly due to low sam‐
pling effort in the oceanic zone. Coefficients of (temporal) variation 
were higher on the continental shelf associated with high gradients 
of SST, where beaked whales were not sighted in any of the surveys 
(Supporting Information Figure S5.2a).

3.3.2 | Sperm whales

Predicted relative densities of sperm whales increased in deep wa‐
ters (>2,000 m) associated with high gradients of SST and high NPP. 
The highest relative densities were also predicted on the western 
side of the Atlantic Ocean, along the Gulf Stream, whereas they 
were lowest in the Mediterranean Sea (Figure 4b).

Reliable predictions for sperm whales were available for 84% of 
the study area under the simple approach and only 30% under the 
precautionary approach because of low survey effort in deeper areas. 
The highest predicted relative densities were predicted outside the 

TA B L E  3   Encounter rates in sightings/100 km calculated for the entire study area and each sub‐region of the North Atlantic Ocean and 
the Mediterranean Sea

Species NE‐ATL NW‐ATL MED Tropics Study area

Beaked whales 0.042 0.058 0.035 0.22 0.051

Sperm whales 0.057 0.067 0.09 0.095 0.067

Kogiids 0.0013 0.01 0.0 0.23 0.0085

NE‐ATL = north‐east Atlantic Ocean; NW‐ATL = north‐west Atlantic Ocean; MED = Mediterranean Sea.
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precautionary interpolation zone (Figure 4b,c). Coefficients of (tem‐
poral) variation were highest in non‐sampled areas where uncer‐
tainty was therefore greatest (Supporting Information Figure S5.2b).

3.3.3 | Kogiids

As the Akaike weight was small for kogiids (0.17), we used model‐
averaging and generated predictions from the five first models (cu‐
mulative Akaike weight of 0.63) and because all predictions were 

very similar (see Supporting Information Appendix ), we only kept 
the first model for practical reasons. The highest relative densities 
were found in deep waters associated with fronts, canyons and sea‐
mounts (Figure 5b). The highest relative densities were predicted 
on the western side of the Atlantic Ocean, along the Gulf Stream 
(Figure 5c).

Reliable predictions for kogiids were available for 94% of the 
study area under the simple approach against only 55% under the 
precautionary approach because of low survey effort in deeper 

F I G U R E  2   Beaked whale and sperm whale averaged effective strip widths (ESWs) estimated for each survey group and each platform 
type. For each survey group, the boxplot represents the extent of estimated ESWs depending on Beaufort sea‐states and observation 
heights recorded within the group [Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  4   Summary of the selected models by species group

Species group Selected variables
Explained 
deviance (%) Akaike weight Specific comments

Beaked whale Depth 33.1 0.98 Depth, gradients SST and slope selected in 
the first 10 modelsGradients SST

Slope

NPP

Sperm whale Depth 20.6 0.76 Depth, gradients SST and SSH mean 
selected in the first eight modelsGradients SST

SSH mean

NPP

Kogiids Depth 55.7 0.17 Depth, gradients SST and surface of 
canyons and seamounts selected in the 
first seven models

Gradients SST

EKE mean

Surface of canyons and 
seamounts

EKE = eddy kinetic energy; NPP = net primary production; SSH = sea surface height; SST = sea surface temperature.

www.wileyonlinelibrary.com
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areas (Figure 5c). Coefficients of (temporal) variation were highest in 
shallow waters and in the Mediterranean Sea where kogiids were not 
sighted in any of the surveys (Supporting Information Figure S5.2c).

4  | DISCUSSION

Deep‐diving cetaceans are species characterized by low sighting 
rates and modelling their habitats is particularly challenging. Our 
study pooled different surveys allowing us to capitalize on more than 
1,240,000 km of survey effort deployed over the North Atlantic 
Ocean and the Mediterranean Sea in the past two decades. For each 
taxon, we built a hierarchical model to estimate the ESW depending 
on observation conditions and surveys. We investigated habitats of 
deep‐divers using GAMs with a focus on quantifying how reliable 
the predictions were. The selected habitat models of deep‐diving 
cetaceans included static environmental variables such as depth 
and slope as well as spatial gradients of temperatures, revealing the 
highest densities in the western North Atlantic Ocean. Deeper areas 

of the North Atlantic gyre were mostly areas of environmental ex‐
trapolation, thereby highlighting gaps in sampling across the differ‐
ent surveys.

4.1 | Methodological considerations

Over the past few years, data‐assembling has been increasingly used 
for the study of top marine predators (Cañadas et al., 2018; Roberts 
et al., 2016; Rogan et al., 2017). Due to the very low sighting rates of 
deep‐diving cetaceans, each survey taken separately cannot provide 
enough data to investigate the habitats of these rare species. In con‐
trast to Rogan et al. (2017), we did not assemble data collected with 
similar protocols but data collected with different variants of the 
line‐transect distance sampling protocol, which meant standardizing 
the data according to their core communalities before developing 
a single spatial model. Ideally, at a time when shared databases are 
becoming increasingly important (e.g., obIs seaMap – https://seamap.env.
duke.edu/, EMODnet – www.emodnet.eu/), implementing stand‐
ardized survey methods would greatly improve data compatibility, 

F I G U R E  3   Functional relationships for the selected variable (a) and the predicted relative densities of beaked whales in individuals/km2 
(b and c). (a) Solid lines are the estimated smooth functions, and the shaded regions represent the approximate 95% confidence intervals. 
The y axes indicate the number of individuals on a log scale, where zero indicates no effect of the covariate. The vertical lines indicate the 
2.5th and 97.5th quantiles of the data. Black areas on prediction maps [(b) without precautionary approach and (c) with a 5% precautionary 
approach] represent zones where we did not extrapolate the predictions. Percentages represent the proportion of the study area defined 
as interpolation with the gap analysis. Npp = net primary production; SST = sea surface temperature [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://seamap.env.duke.edu/
https://seamap.env.duke.edu/
https://www.emodnet.eu/
www.wileyonlinelibrary.com
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by enhancing the level of communalities in shared datasets, and 
helping to describe large‐scale habitats and distributions of marine 
species. However, we realize this can lead to financial and logistical 
constraints and the work we present here could be a way to embrace 
and incorporate the diversity of data collection methods.

Hierarchical modelling accommodates heterogeneity between 
surveys; it borrows strength across surveys (“partial pooling”) when 
estimating survey‐specific ESWs. The resulting estimates are biased 
(in proportion to the available data contributed by each survey) to‐
wards a common mean, although are more precise than those that 
would be obtained if each survey was analysed separately (“no pool‐
ing” scenario) as is usually done when the number of sightings per 
survey is large (Buckland et al., 2015; Laran et al., 2017; Redfern et 
al., 2017). Results from the hierarchical model were consistent with 
expectations and showed that a decrease in Beaufort sea‐state val‐
ues resulted in increased ESW estimates.

The majority of environmental variables we used in habitat 
modelling describe the euphotic zone (upper layer) because vari‐
ables that describe the deep‐water column are difficult to obtain 

or simply do not exist at a basin‐wide scale. As deep‐diving ce‐
taceans spend most of their time at depth and generally feed on 
mesopelagic to bathypelagic prey (e.g., Perrin et al., 2009; Spitz et 
al., 2011), the use of surface variables limits the ability to correctly 
infer their habitat. The identified relationships between deep‐
diving cetacean abundance and environmental variables may be 
indirect rather than causal (Austin, Bowen, McMillan, & Iverson, 
2006). Although causation may be out of reach, prediction remains 
a worthy goal, especially for spatial planning and conservation 
(McShea, 2014).

We took care in using appropriate statistical tools for mod‐
elling the habitat of species with few sightings (Virgili, Authier, 
Monestiez, & Ridoux, 2018). Indeed, Virgili et al. (2018) showed 
that GAMs with a Tweedie distribution generated reliable habitat 
modelling predictions for rarely sighted marine predators. Here, 
the habitat models we selected had moderate to high levels of 
explained deviances (from 20.6% to 55.7%), suggestive of a good 
fit to the data. Nevertheless, the rather high explained deviance 
of the kogiid model (55.7%) might indicate some level of model 

F I G U R E  4   Functional relationships for the selected variable (a) and the predicted relative densities of sperm whales in individuals/km2 
(b and c). (a) Solid lines are the estimated smooth functions, and the shaded regions represent the approximate 95% confidence intervals. 
The y axes indicate the number of individuals on a log scale, where zero indicates no effect of the covariate. The vertical lines indicate the 
2.5th and 97.5th quantiles of the data. Black areas on prediction maps [(b) without precautionary approach and (c) with a 5% precautionary 
approach] represent zones where we did not extrapolate the predictions. Percentages represent the proportion of the study area defined as 
interpolation with the gap analysis. Npp = net primary production; SSH = sea surface height; SST = sea surface temperature [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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over‐fitting due to the small dataset, even though predictions 
were in general consistent with the known ecology of the species 
group (McAlpine, 2009).

4.2 | Large‐scale deep‐diver habitats

Depth and spatial gradients of SST were consistently selected across 
deep‐diving cetaceans, suggesting a major influence of topographic 
features and thermal fronts in structuring their habitats. As a result, 
higher relative densities of deep‐divers were predicted in areas of 
strong gradients associated with thermal fronts in which deep‐diver 
prey aggregates (Bost et al., 2009; Woodson & Litvin, 2015). Indeed, 
deep‐divers typically feed on mesopelagic to bathypelagic species, 
such as pelagic cephalopods and benthic fishes (Spitz et al., 2011) 
that aggregate along continental slopes where temperature gradi‐
ents are the strongest. Hence, the Gulf Stream, which is the most 
active frontal zone in the study area compared to the eastern bound‐
ary currents that are broader and much slower, may explain the high 
predicted relative densities of deep‐divers on the western side of 

the North Atlantic Ocean (Roberts et al., 2016; Waring, Hamazaki, 
Sheehan, Wood, & Baker, 2001).

Despite commonalities, each studied taxon also showed specific‐
ities. Slope appeared to be an important predictor of beaked whale 
relative density. The prey targeted by beaked whales are more spe‐
cific than those of sperm whales, which have a broader prey size 
spectrum (Spitz et al., 2011), and the distribution of the prey tar‐
geted by the sperm whales is more driven by dynamic variables than 
by static features. Accordingly, the selected model for sperm whales 
included more dynamic variables, such as NPP and sea surface 
height (SSH), than that for beaked whales. Canyons and seamounts 
were included in the selected model for kogiids, suggesting a more 
restricted habitat than for the other two groups of deep‐divers, 
consistent with Staudinger, McAlarney, McLellan, and Ann Pabst’s 
(2014) evidence of how kogiids’ feeding areas are concentrated on 
the deeper shelf and slope, particularly in the epipelagic and meso‐
pelagic zones.

Overall, our model predictions corroborated species distribution 
predictions of previous smaller‐scale studies. In the Mediterranean 

F I G U R E  5   Functional relationships for the selected variable (a) and the predicted relative densities of kogiids in individuals/km2 (b and 
c). (a) Solid lines are the estimated smooth functions, and the shaded regions represent the approximate 95% confidence intervals. The y 
axes indicate the number of individuals on a log scale, where zero indicates no effect of the covariate. The vertical lines indicate the 2.5th 
and 97.5th quantiles of the data. Black areas on prediction maps [(b) without precautionary approach and (c) with a 5% precautionary 
approach] represent zones where we did not extrapolate the predictions. Percentages represent the proportion of the study area 
defined as interpolation with the gap analysis. EKE = eddy kinetic energy; SST = sea surface temperature [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Sea, our predictions were consistent with the documented pres‐
ence of beaked whales and sperm whales in the Alborán, Tyrrhenian 
and Ligurian Seas (Arcangeli, Campana, Marini, & MacLeod, 2015; 
Cañadas et al., 2018; Lanfredi et al., 2016; Praca & Gannier, 2008) 
and along the eastern coasts of the Mediterranean Sea (Podestà et 
al., 2006). In the North Atlantic Ocean, the highest relative densities 
of beaked whales and sperm whales were predicted along the slope, 
a result consistent with those of Rogan et al. (2017) and Roberts et al. 
(2016). In the north‐west Atlantic Ocean, higher relative densities of 
kogiids were predicted in warmer and deeper waters, which is consis‐
tent with their known ecology (McAlpine, 2009) and the predictions 
of Mannocci, Roberts, Miller, and Halpin (2017) except for predictions 
off the coast of Florida. Our predictions could probably be improved 
by incorporating the noaa sefsc surveys of south‐east US waters off 
Florida and Virginia. In contrast to beaked and sperm whales, we 
were not able to fit a hierarchical model on kogiid sightings and re‐
sorted to complete pooling of the plane data to estimate an ESW. 
This shortcoming probably resulted in a larger bias (with respect to 
the true density) in predicted relative density of kogiids compared to 
other deep‐diving species. Given the paucity of information on kogi‐
ids, we think that our results are tentative but important nonetheless.

The gap analysis revealed large gaps in environmental space 
coverage across the study area, especially in the deeper and less 
productive waters of the central North Atlantic gyre and in tropical 
waters. High relative densities of deep‐divers were predicted at the 
margin of the precautionary interpolation zone (Figures 3‒5) in par‐
ticular because deeper waters and steeper slopes were within the 
upper 2.5% quantiles of aggregated survey coverage for these two 
physiographic covariates. This suggests that sampling effort was not 
sufficient in deeper and steeper areas and more intensive sampling 
effort performed in these areas could help better describe the habi‐
tat used by deep‐divers.

4.3 | Management considerations

The management and conservation of species and ecosystems in‐
creasingly rely on habitat models (Hazen et al., 2017; McShea, 2014). 
The ability of these to predict species occurrence in non‐sampled or 
poorly documented areas is useful (Fleishman, Nally, Fay, & Murphy, 
2001; Lumaret & Jay‐Robert, 2002) because the implementation of 
dedicated surveys is sometimes impracticable due to budgetary and 
logistical challenges. It is logistically challenging to carry out dedi‐
cated cetacean surveys in the middle of the North Atlantic Ocean. 
However, by collecting data on both sides of the Atlantic Ocean, rel‐
ative density maps were produced and our analyses indicated these 
predictions may be reliable (Figures 3d–5d).

Here, we showed that deep‐diving cetaceans are closely asso‐
ciated with stable topographic features; thus, it could be possible 
to delineate marine protected areas that cover the principal habi‐
tats used by these species (e.g., Cañadas, Sagarminaga, Stephanis, 
Urquiola, & Hammond, 2005). However, these species are also re‐
sponsive to temporally dynamic structures, such as thermal fronts, 
implying that protected areas will need to be large enough to capture 

seasonal variation of such features. In this context, Important Marine 
Mammal Areas, which are currently being discussed by the Marine 
Mammal Protected Areas Task Force and incorporate governmental 
and intergovernmental considerations (Corrigan et al., 2014), could 
help the delineation of sufficiently large protected areas. In addition, 
in a marine spatial planning approach (Douvere, 2008), it would be 
worthwhile to overlay predicted density maps with anthropogenic 
pressure maps (Halpern et al., 2008) to define areas where pressures 
could be mitigated.

5  | CONCLUSION

Habitat modelling of rare species is particularly challenging be‐
cause habitat models require large datasets, yet rare species 
typically yield low numbers of sightings. As a result, combining 
datasets is a useful strategy to model the large‐scale habitats of 
deep‐divers (beaked whales, sperm whales and kogiids) across 
the North Atlantic Ocean and the Mediterranean Sea. At a local 
scale, predicted relative densities of deep‐diving cetaceans were 
consistent with previous studies. At a larger scale, a gradient in 
predicted relative densities emerged, with the highest relative 
densities predicted on the western side of the study area. This 
pattern was evidenced thanks to assembling a large dataset and 
had not been detected previously. It highlighted the pronounced 
influence of active frontal zones, such as the Gulf Stream, on 
deep‐diving cetaceans. Even though extensive gaps remain at 
a large scale, we were able to predict the habitats of these taxa 
throughout the North Atlantic Ocean and adjacent Mediterranean 
Sea, thus identifying potential habitats, including in non‐sampled 
areas. However, these predictions should be used with caution as 
most of the study area represented geographical extrapolations 
and about half (mostly deeper waters) represented environmental 
extrapolations. Indeed, through an environmental space coverage 
gap analysis, we identified areas in tropical and deep oceanic wa‐
ters where sampling effort was insufficient to predict habitats and 
needs to be increased to improve prediction reliability.
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