59 research outputs found

    High-precision elements of double-lined spectroscopic binaries from combined interferometry and spectroscopy. Application to the beta Cephei star beta Centauri

    Get PDF
    We present methodology to derive high-precision estimates of the fundamental parameters of double-lined spectroscopic binaries. We apply the methods to the case study of the double-lined beta Cephei star beta Centauri. We also present a detailed analysis of beta Centauri's line-profile variations caused by its oscillations. We point out that a systematic error in the orbital amplitudes, and any quantities derived from them, occurs if the radial velocities of blended component lines are computed without spectral disentangling. This technique is an essential ingredient in the derivation of the physical parameters if the goal is to obtain a precision of only a few percent. We have devised iteration schemes to obtain the orbital elements for systems whose lines are blended throughout the orbital cycle. We find the following parameters for beta Cen: M1=10.7±0.1MM_1=10.7\pm 0.1 M_\odot and M2=10.3±0.1MM_2=10.3\pm 0.1 M_\odot, an age of (14.1±0.6)×106(14.1\pm 0.6)\times 10^6 years. We deduce two oscillation frequencies for the broad-lined primary of beta Centauri with degrees higher than 2. We propose that our iteration schemes be used in any future derivations of the spectroscopic orbital parameters of double-lined binaries with blended component lines to which disentangling can be successfully applied.Comment: 12 pages, 13 figures, accepted for publication in A&

    Asteroseismology of close binary stars

    Get PDF
    In this review paper, we summarise the goals of asteroseismic studies of close binary stars. We first briefly recall the basic principles of asteroseismology, and highlight how the binarity of a star can be an asset, but also a complication, for the interpretation of the stellar oscillations. We discuss a few sample studies of pulsations in close binaries and summarise some case studies. This leads us to conclude that asteroseismology of close binaries is a challenging field of research, but with large potential for the improvement of current stellar structure theory. Finally, we highlight the best observing strategy to make efficient progress in the near future.Comment: Invited Review Talk at S240 of the IAU: To appear in: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics, Eds W. Hartkopf, E. Guinan, P. Harmanec. 10 pages, 4 figure

    First HARPSpol discoveries of magnetic fields in massive stars

    Get PDF
    In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. In this Letter, we report on the first discoveries of magnetic fields in two massive stars with HARPSpol - HD 130807 and HD 122451, and confirm the presence of a magnetic field at the surface of HD 105382 that was previously observed with a low spectral resolution device. The longitudinal magnetic field measurements are strongly varying for HD 130807 from \sim-100 G to \sim700 G. Those of HD 122451 and HD 105382 are less variable with values ranging from \sim-40 to -80 G, and from \sim-300 to -600 G, respectively. The discovery and confirmation of three new magnetic massive stars, including at least two He-weak stars, is an important contribution to one of the MiMeS objectives: the understanding of origin of magnetic fields in massive stars and their impacts on stellar structure and evolution.Comment: 4 pages, 2 figures, accepted for publication in A&A Lette

    Orbital parameters, masses and distance to Beta Centauri determined with the Sydney University Stellar Interferometer and high resolution spectroscopy

    Get PDF
    The bright southern binary star beta Centauri (HR 5267) has been observed with the Sydney University Stellar Interferometer (SUSI) and spectroscopically with the ESO CAT and Swiss Euler telescopes at La Silla. The interferometric observations have confirmed the binary nature of the primary component and have enabled the determination of the orbital parameters of the system. At the observing wavelength of 442 nm the two components of the binary system have a magnitude difference of 0.15. The combination of interferometric and spectroscopic data gives the following results: orbital period 357 days, semi-major axis 25.30 mas, inclination 67.4 degrees, eccentricity 0.821, distance 102.3 pc, primary and secondary masses M1 = M2 = 9.1 solar masses and absolute visual magnitudes of the primary and secondary M1V = -3.85 and M2V = -3.70. The high accuracy of the results offers a fruitful starting point for future asteroseismic modelling of the pulsating binary components.Comment: 10 pages, 4 figures. Accepted for publication in MNRA

    Modern Analysis Techniques for Spectroscopic Binaries

    Full text link
    Techniques to extract information from spectra of unresolved multi-component systems are revised, with emphasis on recent developments and practical aspects. We review the cross-correlation techniques developed to deal with such spectra, discuss the determination of the broadening function and compare techniques to reconstruct component spectra. The recent results obtained by separating or disentangling the component spectra is summarized. An evaluation is made of possible indeterminacies and random and systematic errors in the component spectra.Comment: 12 pages, 3 figures, Invited talk to appear in the proceedings of IAU Symp. No. 240 'Binary Stars as Critical Tools and Tests in Contemporary Astrophysics' (Prague, 22-25 August 2006), Eds. W. Hartkopf, E. Guinan & P. Harmanec (Cambridge Univ. Press

    Rotation and Convective Core Overshoot in theta Ophiuchi

    Full text link
    (abridged) Recent work on several beta Cephei stars has succeeded in constraining both their interior rotation profile and their convective core overshoot. In particular, a recent study focusing on theta$ Oph has shown that a convective core overshoot parameter of alpha = 0.44 is required to model the observed pulsation frequencies, significantly higher than for other stars of this type. We investigate the effects of rotation and overshoot in early type main sequence pulsators, and attempt to use the low order pulsation frequencies to constrain these parameters. This will be applied to a few test models and theta Oph. We use a 2D stellar evolution code and a 2D linear adiabatic pulsation code to calculate pulsation frequencies for 9.5 Msun models. We calculate low order p-modes for models with a range of rotation rates and convective core overshoot parameters. Using these models, we find that the convective core overshoot has a larger effect on the pulsation frequencies than the rotation, except in the most rapidly rotating models considered. When the differences in radii are accounted for by scaling the frequencies, the effects of rotation diminish, but are not entirely accounted for. We find that increasing the convective core overshoot decreases the large separation, while producing a slight increase in the small separations. We created a model frequency grid which spanned several rotation rates and convective core overshoot values. Using a modified chi^2 statistic, we are able to recover the rotation velocity and core overshoot for a few test models. Finally, we discuss the case of the beta Cephei star theta Oph. Using the observed frequencies and a fixed mass and metallicity, we find a lower overshoot than previously determined, with alpha = 0.28 +/- 0.05. Our determination of the rotation rate agrees well with both previous work and observations, around 30 km/s.Comment: 10 pages, 14 figures. Accepted for publication in A&A

    An asteroseismic study of the Beta Cephei star Theta Ophiuchi: photometric results

    Full text link
    We have carried out a three-site photometric campaign for the Beta Cephei star Theta Ophiuchi from April to August 2003. 245 hours of differential photoelectric uvy photometry were obtained during 77 clear nights. The frequency analysis of our measurements resulted in the detection of seven pulsation modes within a narrow frequency interval between 7.116 and 7.973 c/d. No combination or harmonic frequencies were found. We performed a mode identification of the individual pulsations from our colour photometry that shows the presence of one radial mode, one rotationally split l=1 triplet and possibly three components of a rotationally split l=2 quintuplet. We discuss the implications of our findings and point out the similarity of the pulsation spectrum of Theta Ophiuchi to that of another Beta Cephei star, V836 Cen.Comment: 8 pages, 6 figure

    Multiperiodicity in the large-amplitude rapidly-rotating β\beta Ceph ei star HD 203664

    Get PDF
    We perform a seismic study of the young massive β\beta Cephei star HD 203664 with the goal to constrain its interior structure. Our study is based on a time series of 328 new Geneva 7-colour photometric data of the star spread over 496.8 days. The data confirm the frequency of the dominant mode of the star which we refine to f1=6.02885f_1=6.02885 c d1^{-1}. The mode has a large amplitude of 37 mmag in V and is unambiguously identified as a dipole mode (=2\ell=2) from its amplitude ratios and non-adiabatic computations. Besides f1f_1, we discover two additional new frequencies in the star with amplitudes above 4σ4\sigma: f2=6.82902f_2=6.82902 c d1^{-1} and f3=4.81543f_3=4.81543 c d1^{-1} or one of their daily aliases. The amplitudes of these two modes are only between 3 and 4 mmag which explains why they were not detected before. Their amplitude ratios are too uncertain for mode identification. We show that the observed oscillation spectrum of HD 203664 is compatible with standard stellar models but that we have insufficient information for asteroseismic inferences. Among the large-amplitude β\beta Cephei stars, HD 203664 stands out as the only one rotating at a significant fraction of its critical rotation velocity (40\sim 40%).Comment: 7 pages, 5 figures, accepted for publication in A&A (Astronomy & Astrophysics

    An asteroseismic study of the beta Cephei star beta Canis Majoris

    Get PDF
    We present the results of a detailed analysis of 452 ground-based high-resolution high S/N spectroscopic measurements spread over 4.5 years for beta Canis Majoris with the aim to determine the pulsational characteristics of this star, and to use them to derive seismic constraints on the stellar parameters. We determine pulsation frequencies in the SiIII 4553 Angstrom line with Fourier methods. We identify the m-value of the modes by taking into account the photometric identifications of the degrees l. To this end we use the moment method together with the amplitude and phase variations across the line profile. The frequencies of the identified modes are used for a seismic interpretation of the structure of the star. We confirm the presence of the three pulsation frequencies already detected in previous photometric datasets: f_1 = 3.9793 c/d (46.057 microHz), f_2 = 3.9995 c/d (46.291 microHz) and f_3 = 4.1832 c/d (48.417 microHz). For the two modes with the highest amplitudes we unambiguously identify (l_1,m_1) = (2,2) and (l_2,m_2) = (0,0). We cannot conclude anything for the third mode identification, except that m_3 > 0. We also deduce an equatorial rotational velocity of 31 +/- 5 Km/s for the star. We show that the mode f_1 must be close to an avoided crossing. Constraints on the mass (13.5 +/- 0.5 Msun), age (12.4 +/- 0.7 Myr) and core overshoot (0.20 +/- 0.05 H_P) of beta CMa are obtained from seismic modelling using f_1 and f_2.Comment: Accepted for publication in A&

    Seismic modelling of the β\beta\,Cep star HD\,180642 (V1449\,Aql)

    Get PDF
    We present modelling of the β\beta\,Cep star HD\,180642 based on its observational properties deduced from CoRoT and ground-based photometry as well as from time-resolved spectroscopy. We investigate whether present-day state-of-the-art models are able to explain the full seismic behaviour of this star, which has extended observational constraints for this type of pulsator. We constructed a dedicated database of stellar models and their oscillation modes tuned to fit the dominant radial mode frequency of HD\,180642, by means of varying the hydrogen content, metallicity, mass, age, and core overshooting parameter. We compared the seismic properties of these models with those observed. We find models that are able to explain the numerous observed oscillation properties of the star, for a narrow range in mass of 11.4--11.8\,M_\odot and no or very mild overshooting (with up to 0.05 local pressure scale heights), except for an excitation problem of the =3\ell=3, p1_1 mode. We deduce a rotation period of about 13\,d, which is fully compatible with recent magnetic field measurements. The seismic models do not support the earlier claim of solar-like oscillations in the star. We instead ascribe the power excess at high frequency to non-linear resonant mode coupling between the high-amplitude radial fundamental mode and several of the low-order pressure modes. We report a discrepancy between the seismic and spectroscopic gravity at the 2.5σ2.5\sigma level.Comment: 10 pages, 2 Tables, 6 Figures. Accepted for publication in Astronomy and Astrophysic
    corecore