391 research outputs found

    Structuring the HD 141569 A circumstellar dust disk. Impact of eccentric bound stellar companions

    Get PDF
    Scattered light images of the optically thin dust disk around the 5 Myr old star HD141569 have revealed its complex asymmetric structure. We show in this paper that the surface density inferred from the observations presents similarities with that expected from a circumprimary disk within a highly eccentric binary system. We assume that either the two M stars in the close vicinity of HD141569 are bound companions or at least one of them is an isolated binary companion. We discuss the resulting interaction with an initially axisymmetric disk. This scenario accounts for the formation of a spiral structure, a wide gap in the disk and a broad faint extension outside the truncation radius of the disk after 10-15 orbital periods with no need for massive companion(s) in the midst of the disk resolved in scattered light. The simulations match the observations and the star age if the perturber is on an elliptic orbit with a periastron distance of 930 AU and an eccentricity from 0.7 to 0.9. We find that the numerical results can be reasonably well reproduced using an analytical approach proposed to explain the formation of a spiral structure by secular perturbation of a circumprimary disk by an external bound companion. We also interpret the redness of the disk in the visible reported by Clampin et al.(2003) and show that short-lived grains one order of magnitude smaller than the blow-out size limit are abundant in the disk. The most probable reason for this is that the disk sustains high collisional activity. Finally we conclude that additional processes are required to clear out the disk inside 150 AU and that interactions with planetary companions possibly coupled with the remnant gas disk are likely candidates.Comment: 13 pages. Accepted for publication in A&A. MPEG amd AVI animations + paper available at : http://www.strw.leidenuniv.nl/~augereau/newresults.htm

    Modeling the gas-phase chemistry of the transitional disk around HD 141569A

    Full text link
    Aims: The chemistry, distribution and mass of the gas in the transitional disk around the 5 Myr old B9.5 V star HD 141569A are constrained. Methods: A quasi 2-dimensional (2D) chemistry code for photon dominated regions (PDR) is used to calculate the chemistry and gas temperatures in the disk. The calculations are performed for several gas distributions, PAH abundances and values of the total gas mass. The resulting CO J=2-1 and J=3-2 emission lines are computed with a 2D radiative transfer code and are compared to observations. Results: The CO abundance is very sensitive to the total disk mass because the disk is in a regime where self-shielding just sets in. The observed CO emission lines are best fit by a power-law gas distribution of 80 M_earth starting at 80 AU from the central star, indicating that there is some gas in the inner hole. Predictions are made for intensities of atomic fine-structure lines. [C I], which is the dominant form of carbon in large parts of the disk, is found to be a good alternative tracer of the gas mass.Comment: 11 pages, 9 figures. Accepted for publication in A&

    Does partial tear repair of adjacent tendons improve the outcome of supraspinatus tendonfull-thickness tear reinsertion?

    Get PDF
    AbstractBackgroundPartial tearing of the infraspinatus and/or subscapularis tendon(s) is frequently associated with supraspinatus full-thickness tears. However, limited data regarding its influence on supraspinatus surgical repair is available.PurposeOur aim was to assess the functional and anatomical outcomes of open repair of supraspinatus full-thickness tears combined with adjacent partial tearing, comparatively to a control.MethodsWe retrospectively identified 22 patients (22 shoulders) with a partial tear, most of them being a delamination tear, of the infraspinatus and/or subscapularis tendons associated with a complete detachment of the supraspinatus tendon. Twenty-seven patients (27 shoulders) treated for an isolated complete detachment of the supraspinatus tendon by open repair served as controls. The mean age was 58 years. A proximalized trans-osseous reinsertion of the supraspinatus tendon was combined with a curettage-closure of the delamination tear. Patients were evaluated with standardized MRI at last follow-up.ResultsAt a mean of 75-month follow-up, the presence of a partial tear of either infraspinatus or subscapularis, or both, did not influence function and healing rates of supraspinatus tendon repair. Conversely to the control, when a retear occurred, the functional score tended to worsen. Preoperatively, fatty muscular degeneration was more pronounced when a partial tear was present. Fatty degeneration worsened regardless of repair healing.ConclusionOpen reinsertion of a supraspinatus full-thickness tear associated with a thorough treatment of partial tear of adjacent tendons led to optimal functional and anatomical mid term outcomes. Our results suggest the presence of a partial tear of adjacent tendons could be associated with poorer function in case of supraspinatus tendon re-rupture.Level of evidenceLevel III case-control study

    Interpreting the extended emission around three nearby debris disc host stars

    Full text link
    Cool debris discs are a relic of the planetesimal formation process around their host star, analogous to the solar system's Edgeworth-Kuiper belt. As such, they can be used as a proxy to probe the origin and formation of planetary systems like our own. The Herschel Open Time Key Programmes "DUst around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at far-infrared wavelengths seeking to detect and characterize the emission from their circumstellar dust. Excess emission attributable to the presence of dust was identified from around ∌\sim 20% of stars. Herschel's high angular resolution (∌\sim 7" FWHM at 100 ÎŒ\mum) provided the capacity for resolving debris belts around nearby stars with radial extents comparable to the solar system (50 to 100 au). As part of the DUNES and DEBRIS surveys, we obtained observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD 110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the Herschel PACS instrument. Combining these new images and photometry with ancilliary data from the literature, we undertook simultaneous multi-wavelength modelling of the discs' radial profiles and spectral energy distributions using three different methodologies: single annulus, modified black body, and a radiative transfer code. We present the first far-infrared spatially resolved images of these discs and new single-component debris disc models. We characterize the capacity of the models to reproduce the disc parameters based on marginally resolved emission through analysis of two sets of simulated systems (based on the HIP 22263 and HIP 62207 data) with the noise levels typical of the Herschel images. We find that the input parameter values are recovered well at noise levels attained in the observations presented here.Comment: 13 pages, 5 figures, 5 tables, accepted for publication in A&

    Inner disk clearing around the Herbig Ae star HD\,139614: Evidence for a planet-induced gap ?

    Full text link
    Spatially resolving the inner dust cavity of the transitional disks is a key to understanding the connection between planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap, in the dust, that was spatially resolved by mid-IR interferometry. Using new NIR interferometric observations, we aim to characterize the 0.1-10~au region of the HD~139614 disk further and identify viable mechanisms for the inner disk clearing. We report the first multiwavelength radiative transfer modeling of the interferometric data acquired on HD~139614 with PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometries. We confirm a gap structure in the um-sized dust, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing surface density profile, and a depletion of 10^3 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD~139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the gaseous disk structure. Indeed, a narrow au-sized gap is expected when a single giant planet interacts with the disk. Assuming that small dust grains are well coupled to the gas, we found that a ~ 3~Mjup planet located at 4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion in gas occurred in the inner disk, in contrast to the dust. However, the dust-depleted inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD~139614 disk.Comment: Version accepted in A&A, with typos corrections in the tex

    Probing protoplanetary disks with silicate emission: Where is the silicate emission zone?

    Get PDF
    Recent results indicate that the grain size and crystallinity inferred from observations of silicate features may be correlated with the spectral type of the central star and/or disk geometry. In this paper, we show that grain size, as probed by the 10 ÎŒm silicate feature peak-to-continuum and 11.3 to 9.8 ÎŒm flux ratios, is inversely proportional to log Lsstarf. These trends can be understood using a simple two-layer disk model for passive irradiated flaring disks, CGPLUS. We find that the radius, R10, of the 10 ÎŒm silicate emission zone in the disk goes as (L*/L☉)^0.56, with slight variations depending on disk geometry (flaring angle and inner disk radius). The observed correlations, combined with simulated emission spectra of olivine and pyroxene mixtures, imply a dependence of grain size on luminosity. Combined with the fact that R10 is smaller for less luminous stars, this implies that the apparent grain size of the emitting dust is larger for low-luminosity sources. In contrast, our models suggest that the crystallinity is only marginally affected, because for increasing luminosity, the zone for thermal annealing (assumed to be at T > 800 K) is enlarged by roughly the same factor as the silicate emission zone. The observed crystallinity is affected by disk geometry, however, with increased crystallinity in flat disks. The apparent crystallinity may also increase with grain growth due to a corresponding increase in contrast between crystalline and amorphous silicate emission bands

    Dust Distribution in Gas Disks. A Model for the Ring Around HR 4796A

    Get PDF
    There have been several model analyses of the near and mid IR flux from the circumstellar ring around HR4796A. In the vicinity of a young star, the possibility that the dust ring is embedded within a residual protostellar gas disk cannot be ruled out. In a gas-rich environment, larger sizes (>100ÎŒm>100 \mu m) are needed for the particles to survive the radiative blow out. The total dust mass required to account for the IR flux is <10−1M⊕< 10^{-1} M_\oplus. The combined influence of gas and stellar radiation may also account for the observed sharp inner boundary and rapidly fading outer boundary of the ring. The pressure gradient induced by a small (10%) amplitude variation in the surface density distribution of a low-mass gaseous disk would be sufficient to modify the rotation speed of the gas.Comment: proof read version, 26 pages, LaTex, 11 figures. To appear in The Astronomical Journal June 200

    Dynamical modeling of large scale asymmetries in the beta Pictoris dust disk

    Full text link
    We report a new and complete model of the beta Pictoris disk, which succeeds in accounting for both the surface brightness distribution, warp characteristics, the outer ``butterfly'' asymmetry as observed by HST/STIS in scattered light, as well as the infrared emission. Our model includes the presence of a disk of planetesimals extending out to 120-150 AU, perturbed gravitationally by a giant planet on an inclined orbit, following the approach of Mouillet et al. (1997b). At any time, the planetesimal disk is assumed to be the source of a distribution of grains produced through collisional evolution, with the same initial orbital parameter distribution. The steady state spatial grain distribution is found incorporating the effects of radiation pressure which can cause the distribution of the smallest particles to become very distended. With realistic assumptions about the grains' chemical properties, the modeling confirms the previously evident need for an additional population of hot grains close to the star, to account for the 12 microns fluxes at short distances from the star. It also indicates that this population cannot explain the outer 12 microns flux distribution when the effects of gravity and radiation pressure determine the distribution. Very small grains, produced by collisions among aggregates, are tentatively proposed to account for this 12 microns outer emission

    The Circumstellar Disk of HD 141569 Imaged with NICMOS

    Get PDF
    Coronagraphic imaging with the Near Infrared Camera and Multi Object Spectrometer on the Hubble Space Telescope reveals a large, ~400 AU (4'') radius, circumstellar disk around the Herbig Ae/Be star HD 141569. A reflected light image at 1.1 micron shows the disk oriented at a position angle of 356 +/- 5 deg and inclined to our line of sight by 51 +/- 3 deg; the intrinsic scattering function of the dust in the disk makes the side inclined toward us, the eastern side, brighter. The disk flux density peaks 185 AU (1.''85) from the star and falls off to both larger and smaller radii. A region of depleted material, or a gap, in the disk is centered 250 AU from the star. The dynamical effect of one or more planets may be necessary to explain this morphology.Comment: 4 pages, LaTeX with emulateapj.sty and epsfig.sty, 4 postscript figures, Accepted to ApJ Letter
    • 

    corecore