37 research outputs found

    On Infinite Order Simple Current Extensions of Vertex Operator Algebras

    Full text link
    We construct a direct sum completion C\mathcal{C}_{\oplus} of a given braided monoidal category C\mathcal{C} which allows for the rigorous treatment of infinite order simple current extensions of vertex operator algebras as seen in \cite{CKL}. As an example, we construct the vertex operator algebra VLV_L associated to an even lattice LL as an infinite order simple current extension of the Heisenberg VOA and recover the structure of its module category through categorical considerations.Comment: 26 page

    The fundamental plane of evolving red nuggets

    Get PDF
    We present an exploration of the mass structure of a sample of 12 strongly lensed massive, compact early-type galaxies at redshifts z0.6z\sim0.6 to provide further possible evidence for their inside-out growth. We obtain new ESI/Keck spectroscopy and infer the kinematics of both lens and source galaxies, and combine these with existing photometry to construct (a) the fundamental plane (FP) of the source galaxies and (b) physical models for their dark and luminous mass structure. We find their FP to be tilted towards the virial plane relative to the local FP, and attribute this to their unusual compactness, which causes their kinematics to be totally dominated by the stellar mass as opposed to their dark matter; that their FP is nevertheless still inconsistent with the virial plane implies that both the stellar and dark structure of early-type galaxies is non-homologous. We also find the intrinsic scatter of their FP to be comparable to the local value, indicating that variations in the stellar mass structure outweight variations in the dark halo in the central regions of early-type galaxies. Finally, we show that inference on the dark halo structure -- and, in turn, the underlying physics -- is sensitive to assumptions about the stellar initial mass function (IMF), but that physically-motivated assumptions about the IMF imply haloes with sub-NFW inner density slopes, and may present further evidence for the inside-out growth of compact early-type galaxies via minor mergers and accretion.Comment: 10 pages, 3 figures, 3 tables; submitted to MNRA

    SHARP -- VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars

    Get PDF
    We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro models and a population of low-mass haloes within the mass range 10^6 to 10^9 Msun. Our lens models explicitly include higher-order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average total mass fraction in substructure of f_sub = 0.012^{+0.007}_{-0.004} (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1 sigma. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of m th > 5.58 keV (95 per cent confidence limits), which is consistent with a value of m_th > 5.3 keV from the recent analysis of the Ly-alpha forest. We also identify two main sources of possible systematic errors and conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field.Comment: 14 pages, 7 figures, accepted for publication in MNRA

    Red nuggets grow inside-out: evidence from gravitational lensing

    Get PDF
    We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from HST/ACS and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts 0.4z0.70.4 \lesssim z \lesssim 0.7, lying systematically below the size-mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly-evolved descendants. We exploit the magnifying effect of lensing to investigate the structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two S\'ersic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. We also find that the sources can be characterised by red-to-blue colour gradients as a function of radius which are stronger at low redshift -- indicative of ongoing accretion -- but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are predominantly associated with clusters.Comment: 21 pages; accepted for publication in MNRA

    Battery temperature prediction using an adaptive neuro-fuzzy inference system

    Get PDF
    Maintaining batteries within a specific temperature range is vital for safety and efficiency, as extreme temperatures can degrade a battery’s performance and lifespan. In addition, battery temperature is the key parameter in battery safety regulations. Battery thermal management systems (BTMSs) are pivotal in regulating battery temperature. While current BTMSs offer real-time temperature monitoring, their lack of predictive capability poses a limitation. This study introduces a novel hybrid system that combines a machine learning-based battery temperature prediction model with an online battery parameter identification unit. The identification unit continuously updates the battery’s electrical parameters in real time, enhancing the prediction model’s accuracy. The prediction model employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) and considers various input parameters, such as ambient temperature, the battery’s current temperature, internal resistance, and open-circuit voltage. The model accurately predicts the battery’s future temperature in a finite time horizon by dynamically adjusting thermal and electrical parameters based on real-time data. Experimental tests are conducted on Li-ion (NCA and LFP) cylindrical cells across a range of ambient temperatures to validate the system’s accuracy under varying conditions, including state of charge and a dynamic load current. The proposed models prioritise simplicity to ensure real-time industrial applicability.This work was funded by the UKRI Faraday Battery Challenge project called Next Generation LFP Cathode Material (NEXLFP). In addition, Abbas Fotouhi acknowledges funding from the Faraday Institution (Industrial Fellowships FIIF-003 and FIIF-014)

    The KLEVER Survey: spatially resolved metallicity maps and gradients in a sample of 1.2 < z < 2.5 lensed galaxies

    Get PDF
    We present near-infrared observations of 42 gravitationally lensed galaxies obtained in the framework of the KMOS Lensed Emission Lines and VElocity Review (KLEVER) Survey, a programme aimed at investigating the spatially resolved properties of the ionized gas in 1.2 3σ) ‘inverted’ gradients are also found, showing an anticorrelation between metallicity and star formation rate density on local scales, possibly suggesting recent episodes of pristine gas accretion or strong radial flows in place. Nevertheless, the individual metallicity maps are characterized by a variety of different morphologies, with flat radial gradients sometimes hiding non-axisymmetric variations on kpc scales, which are washed out by azimuthal averages, especially in interacting systems or in those undergoing local episodes of recent star formation

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Alternative Friends

    No full text
    "So no one told you life was gonna be this way… " The opening line in the Friends theme song hints at the rift between expectations and realities in life. That’s about as deep as the show goes in stimulating critical discourse to challenge social constructs. But that wasn’t the purpose of Friends. What if it was? How can performative comedy become a medium to promote discussion and debate of our collective future? The workshop Alternative Friends sought to answer questions that explore the changing dynamics of global economics, politics, race, gender, sexuality and technology. It began with an introduction to the sitcom as a storytelling device. Participants were guided through worldbuilding, creating character profiles, and drafting and performing their script. During the process, clips of Friends and Parks and Recreation were shown to highlight the ubiquity of Trodov’s Theory of story progression. The two groups wrote and performed their own storylines, satirizing intrusive technologies and moral dilemmas that arise in their future worlds. Work developed at the Future Friends Conference, Maribor, Slovenia (April 2019), conceived of by Dash MacDonald, Jimmy Loizeau, Matt Ward and James Auge
    corecore