11 research outputs found

    Towards a European Health Research and Innovation Cloud (HRIC)

    Get PDF
    The European Union (EU) initiative on the Digital Transformation of Health and Care (Digicare) aims to provide the conditions necessary for building a secure, flexible, and decentralized digital health infrastructure. Creating a European Health Research and Innovation Cloud (HRIC) within this environment should enable data sharing and analysis for health research across the EU, in compliance with data protection legislation while preserving the full trust of the participants. Such a HRIC should learn from and build on existing data infrastructures, integrate best practices, and focus on the concrete needs of the community in terms of technologies, governance, management, regulation, and ethics requirements. Here, we describe the vision and expected benefits of digital data sharing in health research activities and present a roadmap that fosters the opportunities while answering the challenges of implementing a HRIC. For this, we put forward five specific recommendations and action points to ensure that a European HRIC: i) is built on established standards and guidelines, providing cloud technologies through an open and decentralized infrastructure; ii) is developed and certified to the highest standards of interoperability and data security that can be trusted by all stakeholders; iii) is supported by a robust ethical and legal framework that is compliant with the EU General Data Protection Regulation (GDPR); iv) establishes a proper environment for the training of new generations of data and medical scientists; and v) stimulates research and innovation in transnational collaborations through public and private initiatives and partnerships funded by the EU through Horizon 2020 and Horizon Europe

    Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects

    No full text
    Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury

    Spatial Analysis of Neural Cell Proteomic Profiles Following Ischemic Stroke in Mice Using High-Plex Digital Spatial Profiling

    No full text
    Stroke is ranked as the fifth leading cause of death and the leading cause of adult disability in the USA. The progression of neuronal damage after stroke is recognized to be a complex integration of glia, neurons, and the surrounding extracellular matrix, therefore potential treatments must target the detrimental effects created by these interactions. In this study, we examined the spatial cellular and neuroinflammatory mechanisms occurring early after ischemic stroke utilizing Nanostring Digital Spatial Profiling (DSP) technology. Male C57bl/6 mice were subjected to photothrombotic middle cerebral artery occlusion (MCAO) and sacrificed at 3 days post-ischemia. Spatial distinction of the ipsilateral hemisphere was studied according to the regions of interest: the ischemic core, peri-infarct tissues, and peri-infarct normal tissue (PiNT) in comparison to the contralateral hemisphere. We demonstrated that the ipsilateral hemisphere initiates distinct spatial regulatory proteomic profiles with DSP technology that can be identified consistently with the immunohistochemical markers, FJB, GFAP, and Iba-1. The core border profile demonstrated an induction of neuronal death, apoptosis, autophagy, immunoreactivity, and early degenerative proteins. Most notably, the core border resulted in a decrease of the neuronal proteins Map2 and NeuN; an increase in the autophagy proteins BAG3 and CTSD; an increase in the microglial and peripheral immune invasion proteins Iba1, CD45, CD11b, and CD39; and an increase in the neurodegenerative proteins BACE1, APP, amyloid β 1-42, ApoE, and hyperphosphorylated tau protein S-199. The peri-infarct region demonstrated increased astrocytic, immunoreactivity, apoptotic, and neurodegenerative proteomic profiles, with an increase in BAG3, GFAP, and hyperphosphorylated tau protein S-199. The PiNT region displayed minimal changes compared to the contralateral cortex with only an increase in GFAP. In this study, we showed that mechanisms known to be associated with stroke, such as apoptosis and inflammation, occur in distinct spatial domains of the injured brain following ischemia. We also demonstrated the dysregulation of specific autophagic pathways that may lead to neurodegeneration in peri-infarct brain tissues. Taken together, these data suggest that identifying post-ischemic mechanisms occurring in a spatiotemporal manner may lead to more precise targets for successful therapeutic interventions to treat stroke

    Risk factors for sedation-related events during procedural sedation in the emergency department

    No full text
    Objective: To determine the nature, incidence and risk factors for sedation-related events during ED procedural sedation, with particular focus on the drugs administered

    Towards a European health research and innovation cloud (HRIC)

    Full text link
    The European Union (EU) initiative on the Digital Transformation of Health and Care (Digicare) aims to provide the conditions necessary for building a secure, flexible, and decentralized digital health infrastructure. Creating a European Health Research and Innovation Cloud (HRIC) within this environment should enable data sharing and analysis for health research across the EU, in compliance with data protection legislation while preserving the full trust of the participants. Such a HRIC should learn from and build on existing data infrastructures, integrate best practices, and focus on the concrete needs of the community in terms of technologies, governance, management, regulation, and ethics requirements. Here, we describe the vision and expected benefits of digital data sharing in health research activities and present a roadmap that fosters the opportunities while answering the challenges of implementing a HRIC. For this, we put forward five specific recommendations and action points to ensure that a European HRIC: i) is built on established standards and guidelines, providing cloud technologies through an open and decentralized infrastructure; ii) is developed and certified to the highest standards of interoperability and data security that can be trusted by all stakeholders; iii) is supported by a robust ethical and legal framework that is compliant with the EU General Data Protection Regulation (GDPR); iv) establishes a proper environment for the training of new generations of data and medical scientists; and v) stimulates research and innovation in transnational collaborations through public and private initiatives and partnerships funded by the EU through Horizon 2020 and Horizon Europe
    corecore