324 research outputs found
How fast is fisheries-induced evolution? : Quantitative analysis of modelling and empirical studies
Peer reviewe
Soft-bottom fishes and spatial protection: findings from a temperate marine protected area
Numerous studies over the last decades have focused on marine protected areas (MPAs) and their effects on fish communities. However, there is a knowledge gap regarding how species that live associated with soft-substrates (e.g., sand, mud) respond to spatial protection. We analyzed abundance, biomass and total lengths of the soft-bottom fishes in a multiple-use MPA in the north-eastern Atlantic, the Luiz Saldanha Marine Park (Portugal), during and after the implementation of its management plan. Data were collected by experimental fishing in areas with three different levels of protection, during the implementation period and for three years after full implementation of the MPA. Univariate analysis detected significant biomass increases between the two periods. Fish assemblages were mainly structured by depth and substrate, followed by protection level. Community composition analyses revealed significant differences between protection levels and between the two periods. Species exhibited a broad variation in their response to protection, and we hypothesize that factors such as species habitat preferences, body size and late maturity might be underlying determinants. Overall, this study provides some evidence of protection effectiveness in soft-bottom fish communities, supported by the significant increase in biomass in the protected areas and the positive trends of some species.project LIFE-BIOMARES [LIFE06 NAT/P/000192]; project BUFFER (ERA-Net BiodivERsA); company SECIL-Companhia Geral de Cal e Cimento S.A.; FCT-Foundation for Science and Technology [CCMAR/Multi/04326/2013, SFRH/BD/80771/2011]; Foundation for Science and Technology [SFRH/BD/80771/2011]; 2012 Sesimbra Scientific Priz
Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming
Resolving the combined effect of climate warming and exploitation in a food web context is key for predicting future biomass production, size-structure and potential yields of marine fishes. Previous studies based on mechanistic size-based food web models have found that bottom-up processes are important drivers of size-structure and fisheries yield in changing climates. However, we know less about the joint effects of 'bottom-up' and physiological effects of temperature; how do temperature effects propagate from individual-level physiology through food webs and alter the size-structure of exploited species in a community? Here, we assess how a species-resolved size-based food web is affected by warming through both these pathways and by exploitation. We parameterize a dynamic size spectrum food web model inspired by the offshore Baltic Sea food web, and investigate how individual growth rates, size-structure, and relative abundances of species and yields are affected by warming. The magnitude of warming is based on projections by the regional coupled model system RCA4-NEMO and the RCP 8.5 emission scenario, and we evaluate different scenarios of temperature dependence on fish physiology and resource productivity. When accounting for temperature-effects on physiology in addition to on basal productivity, projected size-at-age in 2050 increases on average for all fish species, mainly for young fish, compared to scenarios without warming. In contrast, size-at-age decreases when temperature affects resource dynamics only, and the decline is largest for young fish. Faster growth rates due to warming, however, do not always translate to larger yields, as lower resource carrying capacities with increasing temperature tend to result in decline in the abundance of larger fish and hence spawning stock biomass. These results suggest that to understand how global warming affects the size structure of fish communities, both direct metabolic effects and indirect effects of temperature via basal resources must be accounted for
Diversity and distribution of genetic variation in gammarids: Comparing patterns between invasive and non-invasive species
© 2017 Published by John Wiley & Sons Ltd. Biological invasions are worldwide phenomena that have reached alarming levels among aquatic species. There are key challenges to understand the factors behind invasion propensity of non-native populations in invasion biology. Interestingly, interpretations cannot be expanded to higher taxonomic levels due to the fact that in the same genus, there are species that are notorious invaders and those that never spread outside their native range. Such variation in invasion propensity offers the possibility to explore, at fine-scale taxonomic level, the existence of specific characteristics that might predict the variability in invasion success. In this work, we explored this possibility from a molecular perspective. The objective was to provide a better understanding of the genetic diversity distribution in the native range of species that exhibit contrasting invasive propensities. For this purpose, we used a total of 784 sequences of the cytochrome c oxidase subunit I of mitochondrial DNA (mtDNA-COI) collected from seven Gammaroidea, a superfamily of Amphipoda that includes species that are both successful invaders (Gammarus tigrinus, Pontogammarus maeoticus, and Obesogammarus crassus) and strictly restricted to their native regions (Gammarus locusta, Gammarus salinus, Gammarus zaddachi, and Gammarus oceanicus). Despite that genetic diversity did not differ between invasive and non-invasive species, we observed that populations of non-invasive species showed a higher degree of genetic differentiation. Furthermore, we found that both geographic and evolutionary distances might explain genetic differentiation in both non-native and native ranges. This suggests that the lack of population genetic structure may facilitate the distribution of mutations that despite arising in the native range may be beneficial in invasive ranges. The fact that evolutionary distances explained genetic differentiation more often than geographic distances points toward that deep lineage divergence holds an important role in the distribution of neutral genetic diversity
Unique mitochondrial DNA lineages in Irish sticklebackpopulations: cryptic refugium or rapid recolonization?
Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna
Estimating maturity from size-at-age data: are real-world fisheries datasets up to the task?
The size and age at which individuals mature is rapidly changing due to plastic and evolved responses to fisheries harvest and global warming. Understanding the nature of these changes is essential because maturity schedules are critical in determining population demography and ultimately, the economic value and viability of fisheries. Detecting maturity changes is, however, practically difficult and costly. A recently proposed biphasic growth modelling likelihood profiling method offers great potential as it can statistically estimate age-at-maturity from population-level size-at-age data, using the change-point in growth that occurs at maturity. Yet, the performance of the method on typical marine fisheries datasets remains untested. Here, we assessed the suitability of 12 North Sea and Australian species’ datasets for the likelihood profiling approach. The majority of the fisheries datasets were unsuitable as they had too small sample sizes or too large size-at-age variation. Further, datasets that did satisfy data requirements generally showed no correlation between empirical and model-derived maturity estimates. To understand why the biphasic approach had low performance we explored its sensitivity using simulated datasets. We found that method performance for marine fisheries datasets is likely to be low because of: (1) truncated age structures due to intensive fishing, (2) an under-representation of young individuals in datasets due to common fisheries-sampling protocols, and (3) large intrapopulation variability in growth curves. To improve our ability to detect maturation changes from population level size-at-age data we need to improve data collection protocols for fisheries monitoring
Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic ridge
Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme,
ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration
dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and
dispersal mechanisms
Effects of fishery protection on biometry and genetic structure of two target sea cucumber species from the Mediterranean Sea
Sea cucumber fisheries are now occurring
in most of the tropical areas of the world, having
expanded from its origin in the central Indo-Pacific.
Due to the overexploitation of these resources and the
increasing demand from Asian countries, new target
species from Mediterranean Sea and northeastern
Atlantic Ocean are being caught. The fishery effects
on biometry and genetic structure of two target species
(Holothuria polii and H. tubulosa) from Turkey, were
assessed. The heaviest and largest individuals of H.
polii were found into the non-fishery area of Kusadasi,
also showing the highest genetic diversity. Similar
pattern was detected in H. tubulosa, but only the
weight was significantly higher in the protected area.
However, the observed differences on the fishery
effects between species, could be explained considering
the different percentage of catches (80% for H.
polii and 20% for H. tubulosa)
- …
