382 research outputs found
Combining high-flow nasal cannula oxygen and non-invasive ventilation for pre-oxygenation in the critically ill: is a double-pronged approach warranted?
International audienc
Recommended from our members
How can Global Legality verification Initiatives Enhance Local Rights to Forest resources in Peru?
Psychometric comparison of three behavioural scales for the assessment of pain in critically ill patients unable to self-report
International audienc
Spontaneous breathing trial and post-extubation work of breathing in morbidly obese critically ill patients
Figure S5. difference in the work of breathing expressed in J/l between each test and the post-extubation period. Dashed line represents the absence of difference between the test and the post-extubation period. (JPG 44Â kb
A cross-sectional study of tuberculosis drug resistance among previously treated patients in a tertiary hospital in Accra, Ghana: public health implications of standardized regimens.
BACKGROUND: Mycobacterium tuberculosis drug resistance is a major challenge to the use of standardized regimens for tuberculosis (TB) therapy, especially among previously treated patients. We aimed to investigate the frequency and pattern of drug resistance among previously treated patients with smear-positive pulmonary tuberculosis at the Korle-Bu Teaching Hospital Chest Clinic, Accra. METHODS: This was a cross-sectional survey of mycobacterial isolates from previously treated patients referred to the Chest Clinic Laboratory between October 2010 and October 2013. The Bactec MGIT 960 system for mycobactrerial culture and drug sensitivity testing (DST) was used for sputum culture of AFB smear-positive patients with relapse, treatment failure, failure of smear conversion, or default. Descriptive statistics were used to summarize patient characteristics, and frequency and patterns of drug resistance. RESULTS: A total of 112 isolates were studied out of 155 from previously treated patients. Twenty contaminated (12.9%) and 23 non-viable isolates (14.8%) were excluded. Of the 112 studied isolates, 53 (47.3%) were pan-sensitive to all first-line drugs tested Any resistance (mono and poly resistance) to isoniazid was found in 44 isolates (39.3%) and any resistance to streptomycin in 43 (38.4%). Thirty-one (27.7%) were MDR-TB. Eleven (35.5%) out of 31 MDR-TB isolates were pre-XDR. MDR-TB isolates were more likely than non-MDR isolates to have streptomycin and ethambutol resistance. CONCLUSIONS: The main findings of this study were the high prevalence of MDR-TB and streptomycin resistance among previously treated TB patients, as well as a high prevalence of pre-XDR-TB among the MDR-TB patients, which suggest that first-line and second-line DST is essential to aid the design of effective regimens for these groups of patients in Ghana
Optimization Strategies for Interactive Classification of Interstitial Lung Disease Textures
For computerized analysis of textures in interstitial lung disease, manual annotations of lung tissue are necessary. Since making these annotations is labor intensive, we previously proposed an interactive annotation framework. In this framework, observers iteratively trained a classifier to distinguish the different texture types by correcting its classification errors. In this work, we investigated three ways to extend this approach, in order to decrease the amount of user interaction required to annotate all lung tissue in a computed tomography scan. First, we conducted automatic classification experiments to test how data from previously annotated scans can be used for classification of the scan under consideration. We compared the performance of a classifier trained on data from one observer, a classifier trained on data from multiple observers, a classifier trained on consensus training data, and an ensemble of classifiers, each trained on data from different sources. Experiments were conducted without and with texture selection (ts). In the former case, training data from all eight textures was used. In the latter, only training data from the texture types present in the scan were used, and the observer would have to indicate textures contained in the scan to be analyzed. Second, we simulated interactive annotation to test the effects of (1) asking observers to perform ts before the start of annotation, (2) the use of a classifier trained on data from previously annotated scans at the start of annotation, when the interactive classifier is untrained, and (3) allowing observers to choose which interactive or automatic classification results they wanted to correct. Finally, various strategies for selecting the classification results that were presented to the observer were considered. Classification accuracies for all possible interactive annotation scenarios were compared. Using the best-performing protocol, in which observers select the textures that should be distinguished in the scan and in which they can choose which classification results to use for correction, a median accuracy of 88% was reached. The results obtained using this protocol were significantly better than results obtained with other interactive or automatic classification protocols
New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8 Photometric Luminous Galaxies
We present neutrino mass bounds using 900,000 luminous galaxies with
photometric redshifts measured from Sloan Digital Sky Survey III Data Release
Eight (SDSS DR8). The galaxies have photometric redshifts between
and , and cover 10,000 square degrees and thus probe a volume of
3Gpc, enabling tight constraints to be derived on the amount of
dark matter in the form of massive neutrinos. A new bound on the sum of
neutrino masses eV, at 95% confidence level (CL), is
obtained after combining our sample of galaxies, which we call "CMASS", with
WMAP 7 year Cosmic Microwave Background (CMB) data and the most recent
measurement of the Hubble parameter from the Hubble Space Telescope (HST). This
constraint is obtained with a conservative multipole range choice of in order to minimize non-linearities, and a free bias parameter in each
of the four redshift bins. We study the impact of assuming this linear galaxy
bias model using mock catalogs, and find that this model causes a small () bias in . For this reason, we also quote
neutrino bounds based on a conservative galaxy bias model containing
additional, shot noise-like free parameters. In this conservative case, the
bounds are significantly weakened, e.g. eV (95% confidence
level) for WMAP+HST+CMASS (). We also study the dependence
of the neutrino bound on multipole range ( vs ) and on which combination of data sets is included as a prior. The
addition of supernova and/or Baryon Acoustic Oscillation data does not
significantly improve the neutrino mass bound once the HST prior is included.
[abridged]Comment: 14 pages, 8 figures, 1 tabl
an international survey before and during the COVID-19 pandemic
Funding Information: The Société Française d’Anesthésie et de Réanimation (SFAR), Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias (SEMICYUC), Sociedad Argentina de Terapia Intensiva (SATI), Sociedad Chilena de Medicina Intensiva (SOCHIMI), Associação de Medicina Intensiva Brasileira (AMIB-Net) and the Brazilian Research in Intensive Care Network (BricNet) supported this survey. We would also like to thank our friend Tiago Rocha for making the amazing logo for this study. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. Publisher Copyright: © 2022, The Author(s).Background: Since the publication of the 2018 Clinical Guidelines about sedation, analgesia, delirium, mobilization, and sleep deprivation in critically ill patients, no evaluation and adequacy assessment of these recommendations were studied in an international context. This survey aimed to investigate these current practices and if the COVID-19 pandemic has changed them. Methods: This study was an open multinational electronic survey directed to physicians working in adult intensive care units (ICUs), which was performed in two steps: before and during the COVID-19 pandemic. Results: We analyzed 1768 questionnaires and 1539 (87%) were complete. Before the COVID-19 pandemic, we received 1476 questionnaires and 292 were submitted later. The following practices were observed before the pandemic: the Visual Analog Scale (VAS) (61.5%), the Behavioral Pain Scale (BPS) (48.2%), the Richmond Agitation Sedation Scale (RASS) (76.6%), and the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) (66.6%) were the most frequently tools used to assess pain, sedation level, and delirium, respectively; midazolam and fentanyl were the most frequently used drugs for inducing sedation and analgesia (84.8% and 78.3%, respectively), whereas haloperidol (68.8%) and atypical antipsychotics (69.4%) were the most prescribed drugs for delirium treatment; some physicians regularly prescribed drugs to induce sleep (19.1%) or ordered mechanical restraints as part of their routine (6.2%) for patients on mechanical ventilation; non-pharmacological strategies were frequently applied for pain, delirium, and sleep deprivation management. During the COVID-19 pandemic, the intensive care specialty was independently associated with best practices. Moreover, the mechanical ventilation rate was higher, patients received sedation more often (94% versus 86.1%, p < 0.001) and sedation goals were discussed more frequently in daily rounds. Morphine was the main drug used for analgesia (77.2%), and some sedative drugs, such as midazolam, propofol, ketamine and quetiapine, were used more frequently. Conclusions: Most sedation, analgesia and delirium practices were comparable before and during the COVID-19 pandemic. During the pandemic, the intensive care specialty was a variable that was independently associated with the best practices. Although many findings are in accordance with evidence-based recommendations, some practices still need improvement.publishersversionpublishe
Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies
We measure the acoustic scale from the angular power spectra of the Sloan
Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes
872,921 galaxies over ~ 10,000 deg^2 between 0.45<z<0.65. The extensive
spectroscopic training set of the Baryon Oscillation Spectroscopic Survey
(BOSS) luminous galaxies allows precise estimates of the true redshift
distributions of galaxies in our imaging catalog. Utilizing the redshift
distribution information, we build templates and fit to the power spectra of
the data, which are measured in our companion paper, Ho et al. 2011, to derive
the location of Baryon acoustic oscillations (BAO) while marginalizing over
many free parameters to exclude nearly all of the non-BAO signal. We derive the
ratio of the angular diameter distance to the sound horizon scale D_A/r_s=
9.212 + 0.416 -0.404 at z=0.54, and therefore, D_A= 1411+- 65 Mpc at z=0.54;
the result is fairly independent of assumptions on the underlying cosmology.
Our measurement of angular diameter distance D_A is 1.4 \sigma higher than what
is expected for the concordance LCDM (Komatsu et al. 2011), in accordance to
the trend of other spectroscopic BAO measurements for z >~ 0.35. We report
constraints on cosmological parameters from our measurement in combination with
the WMAP7 data and the previous spectroscopic BAO measurements of SDSS
(Percival et al. 2010) and WiggleZ (Blake et al. 2011). We refer to our
companion papers (Ho et al. 2011; de Putter et al. 2011) for investigations on
information of the full power spectrum.Comment: 16 pages, 14 figures, 3 tables, submitted to Ap
- …