390 research outputs found

    Castor A and Castor B resolved in a simultaneous Chandra and XMM-Newton observation

    Get PDF
    We present a simultaneous Chandra and XMM-Newton observation of the Castor sextett, focusing on Castor A and Castor B, two spectroscopic binaries with early-type primaries. Of the present day X-ray instruments only Chandra can isolate the X-ray lightcurves and spectra of A and B. We compare the Chandra observation with XMM-Newton data obtained simultaneously. Albeit not able to resolve Castor A and Castor B from each other, the higher sensitivity of XMM-Newton allows for a quantitative analysis of their combined high-resolution spectrum. He-like line triplets are used to examine the temperature and the density in the corona of Castor AB. The temporal variability of Castor AB is studied using data collected with the European Photon Imaging Camera onboard XMM-Newton. Strong flare activity is observed, and combining the data acquired simultaneously with Chandra and XMM-Newton each flare can be assigned to its host. Our comparison with the conditions of the coronal plasma of other stars shows that Castor AB behave like typical late-type coronal X-ray emitters supporting the common notion that the late-type secondaries within each spectroscopic binary are the sites of the X-ray production.Comment: accepted for publication in A&

    Simultaneous X-ray spectroscopy of YY Gem with Chandra and XMM-Newton

    Get PDF
    We report on a detailed study of the X-ray spectrum of the nearby eclipsing spectroscopic binary YY Gem. Observations were obtained simultaneously with both large X-ray observatories, XMM-Newton and Chandra. We compare the high-resolution spectra acquired with the Reflection Grating Spectrometer onboard XMM-Newton and with the Low Energy Transmission Grating Spectrometer onboard Chandra, and evidence in direct comparison the good performance of both instruments in terms of wavelength and flux calibration. The strongest lines in the X-ray spectrum of YY Gem are from oxygen. Oxygen line ratios indicate the presence of a low-temperature component (1-4 MK) with density n_e < 2 10^{10} cm^-3. The X-ray lightcurve reveals two flares and a dip corresponding to the secondary eclipse. An increase of the density during phases of high activity is suggested from time-resolved spectroscopy. Time-resolved global fitting of the European Photon Imaging Camera CCD spectrum traces the evolution of temperature and emission measure during the flares. These medium-resolution spectra show that temperatures > 10^7 K are relevant in the corona of YY Gem although not as dominant as the lower temperatures represented by the strongest lines in the high-resolution spectrum. Magnetic loops with length on the order of 10^9 cm, i.e., about 5 % of the radius of each star, are inferred from a comparison with a one-dimensional hydrodynamic model. This suggests that the flares did not erupt in the (presumably more extended) inter-binary magnetosphere but are related to one of the components of the binary.Comment: 15 pages, accepted for publication in A&

    Chemical composition of the Taurus-Auriga association

    Full text link
    The Taurus-Auriga association is perhaps the most famous prototype of a low-mass star forming region, surveyed at almost all wavelengths. Unfortunately, like several other young clusters/associations, this T association lacks an extensive abundance analysis determination. We present a high-resolution spectroscopic study of seven low-mass members of Taurus-Auriga, including both weak-lined and classical T Tauri stars designed to help robustly determine their metallicity. After correcting for spectral veiling, we performed equivalent width and spectral synthesis analyses using the GAIA set of model atmospheres and the 2002 version of the code MOOG. We find a solar metallicity, obtaining a mean value of [Fe/H]=0.01±-0.01\pm0.05. The α\alpha-element Si and the Fe-peak one Ni confirm a solar composition. Our work shows that the dispersion among members is well within the observational errors at variance with previous claims. As in other star forming regions, no metal-rich members are found, reinforcing the idea that old planet-host stars form in the inner part of the Galactic disc and subsequently migrate.Comment: In press on A\&

    Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery

    Get PDF
    Background: The purpose of the study was to characterize histological response to chemotherapy of hepatic colorectal metastases (HCRM), evaluate efficacy of different chemotherapies on histological response, and determine whether tumor regression grading (TRG) of HCRM predicts clinical outcome. Patients and methods: TRG was evaluated on 525 HCRM surgically resected from 181 patients, 112 pretreated with chemotherapy. Disease-free survival (DFS) and overall survival (OS) were correlated to TRG. Results: Tumor regression was characterized by fibrosis overgrowing on tumor cells, decreased necrosis, and tumor glands (if present) at the periphery of HCRM. With irinotecan/5-fluorouracil (5-FU), major (MjHR), partial (PHR), and no (NHR) histological tumor regression were observed in 17%, 13%, and 70% of patients, respectively. With oxaliplatin/5-FU, MjHR, PHR, and NHR were observed in 37%, 45%, and 18% of patients, respectively. Five patients, treated with oxaliplatin, had complete response in all their metastases. MjHR was associated with an improved 3-year DFS compared with PHR or NHR. MjHR and PHR were associated with an improved 5-year OS compared with NHR. Conclusion: Histological tumor regression of HCRM to chemotherapy corresponds to fibrosis overgrowth and not to increase of necrosis. TRG should be considered when evaluating efficacy of chemotherapy for HCRM. Histological tumor regression was most common among oxaliplatin-treated patients and associated with better clinical outcom

    Constraining mixing processes in stellar cores using asteroseismology. Impact of semiconvection in low-mass stars

    Full text link
    The overall evolution of low-mass stars is heavily influenced by the processes occurring in the stellar interior. In particular, mixing processes in convectively unstable zones and overshooting regions affect the resulting observables and main sequence lifetime. We study the effects of different convective boundary definitions and mixing prescriptions in convective cores of low-mass stars, to discriminate the existence, size, and evolutionary stage of the central mixed zone by means of asteroseismology. We implemented the Ledoux criterion for convection in our stellar evolution code, together with a time-dependent diffusive approach for mixing of elements when semiconvective zones are present. We compared models with masses ranging from 1 M* to 2 M* computed with two different criteria for convective boundary definition and including different mixing prescriptions within and beyond the formal limits of the convective regions. Using calculations of adiabatic oscillations frequencies for a large set of models, we developed an asteroseismic diagnosis using only l=0 and l=1 modes based on the ratios of small to large separations r01 and r10 defined by Roxburgh & Vorontsov (2003). These variables are almost linear in the expected observable frequency range, and we show that their slope depends simultaneously on the central hydrogen content, the extent of the convective core, and the amplitude of the sound-speed discontinuity at the core boundary. By considering about 25 modes and an accuracy in the frequency determinations as expected from the CoRoT and Kepler missions, the technique we propose allows us to detect the presence of a convective core and to discriminate the different sizes of the homogeneously mixed central region without the need of a strong a priori for the stellar mass.Comment: 13 pages, 9 figures, accepted for publication in A&

    Severe hepatic sinusoidal obstruction associated with oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer

    Get PDF
    Background: In advanced metastatic colorectal adenocarcinoma, the addition of a neo-adjuvant systemic treatment to surgery might translate into a survival advantage, although this is yet to be confirmed by ongoing randomized trials. The objective of this study was to assess the effects of preoperative systemic chemotherapy on the morphology of non-tumoral liver. Patients and methods: A large series of surgically resected liver metastases (n = 153) was selected. Light microscopy, electron microscopy, and immunohistochemistry using antibodies against endothelial cells (CD31) and hepatic stellate cells (α-SM actin, CRBP-1) were performed to identify sinusoidal wall integrity. Results: We found that 44 (51%) of the 87 post-chemotherapic liver resection specimens had sinusoidal dilatation and hemorrhage, related to rupture of the sinusoidal barrier. In contrast, the 66 livers treated by surgery alone remained normal. In 21 out of the 44 post-chemotherapy patients (48%), perisinusoidal and veno-occlusive fibrosis also developed. Sinusoidal injury persisted several months after end of chemotherapy, and fibrosis may progress. Development of lesions was strongly correlated to the use of oxaliplatin; 34 out of 43 patients (78%) treated with this drug showed striking sinusoidal alterations. Conclusions: Systemic neo-adjuvant chemotherapy in metastatic colorectal cancer frequently causes morphological lesions involving hepatic microvasculature. Sinusoidal obstruction, complicated by perisinusoidal fibrosis and veno-occlusive lesion of the non-tumoral liver revealed by this study, should be included in the list of the adverse side-effects of colorectal systemic chemotherapy, in particular related to the use of oxaliplati

    The "Solar Model Problem" Solved by the Abundance of Neon in Stars of the Local Cosmos

    Full text link
    The interior structure of the Sun can be studied with great accuracy using observations of its oscillations, similar to seismology of the Earth. Precise agreement between helioseismological measurements and predictions of theoretical solar models has been a triumph of modern astrophysics (Bahcall et al. 2005). However, a recent downward revision by 25-35% of the solar abundances of light elements such as C, N, O and Ne (Asplund et al. 2004) has broken this accordance: models adopting the new abundances incorrectly predict the depth of the convection zone, the depth profiles of sound speed and density, and the helium abundance (Basu Antia 2004, Bahcall et al. 2005). The discrepancies are far beyond the uncertainties in either the data or the model predictions (Bahcall et al. 2005b). Here we report on neon abundances relative to oxygen measured in a sample of nearby solar-like stars from their X-ray spectra. They are all very similar and substantially larger than the recently revised solar value. The neon abundance in the Sun is quite poorly determined. If the Ne/O abundance in these stars is adopted for the Sun the models are brought back into agreement with helioseismology measurements (Antia Basu 2005, Bahcall et al. 2005c).Comment: 13 pages, 3 Figure
    corecore