146 research outputs found

    Facile synthesis of high-surface area platinum-doped ceria for low temperature CO oxidation

    Get PDF
    International audienceUsing a simple slow decomposition method of nitrate precursors, high-surface area platinum-doped ceria with a crystallite size of 9 nm can be prepared. The catalytic performance of the compound can be tuned by changing the reduction temperature under hydrogen (300°C, 500°C and 700°C). The catalyst treated at 300°C shows the best catalytic performance, being active at room temperature. The materials were analysed using a combination of structural characterization methods (X-ray diffraction (XRD), nitrogen physisorption, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM)), surface sensitive methods (X-ray photoelectron spectroscopy (XPS), H 2-chemisorption and H 2-temperature-programmed reduction (TPR)) and X-ray absorption fluorescence spectroscopy (XAFS). HAADF-STEM and XAFS analysis suggests successful doping of platinum in the ceria lattice. After pretreatment at 300°C, the situation is slightly different. While no defined platinum nanoparticles can be identified on the surface, some platinum is in a reduced state (XPS, H 2-chemisorption)

    Impact of acoustic airflow nebulization on intrasinus drug deposition of a human plastinated nasal cast: New insights into the mechanisms involved

    Get PDF
    International audienceThe impact of 100 Hz (Hertz) acoustic frequency airflow on sinus drug deposition of aerosols was investigated using a human plastinated nasal cast. The influence of drug concentration and endonasal anatomical features on the sinus deposition enhanced by the 100 Hz acoustic airflow was also examined. Plastinated models were anatomically, geometrically and aerodynamically validated (endoscopy, CT scans, acoustic rhinometry and rhinomanometry). Using the gentamicin as a marker, 286 experiments of aerosol deposition were performed. Changes of airborne particles metrology produced under different nebulization conditions (100 Hz acoustic airflow and gentamicin concentration) were also examined. Aerodynamic and geometric investigations highlighted a global behaviour of plastinated models in perfect accordance with a nasal decongested healthy subject. The results of intrasinus drug deposition clearly demonstrated that the aerosols can penetrate into the maxillary sinuses. The 100 Hz acoustic airflow led to increase the deposition of drug into the maxillary sinuses by a factor 2-3 depending on the nebulization conditions. A differential intrasinus deposition of active substance depending on maxillary ostium anatomical features and drug concentration was emphasized. The existence of a specific transport mechanism of penetration of nebulized particles delivered with acoustic airflow was proposed

    Perinatal Exposure to Bisphenol A Alters Early Adipogenesis in the Rat

    Get PDF
    BACKGROUND: The causes of the current obesity pandemic have not been fully elucidated. Implication of environmental endocrine disruptors such as bisphenol A (BPA) on adipose tissue development has been poorly investigated. OBJECTIVES: The aim of the present study was to evaluate the effects of perinatal exposure to BPA on early adipose storage at weaning. METHODS: Pregnant Sprague-Dawley rats had access to drinking water containing 1 mg/L BPA from day 6 of gestation through the end of lactation. Pups were weaned on postnatal day (PND) 21. At that time, we investigated perigonadal adipose tissue of pups (weight, histology, gene expression). For the remaining animals, we recorded body weight and food intake for animals on either standard chow or a high-fat diet. RESULTS: Gestational exposure to BPA did not alter the sex ratio or litter size at birth. On PND1, the weight of male and female BPA-exposed pups was increased. On PND21, body weight was increased only in females, in which parametrial white adipose tissue (pWAT) weight was increased about 3-fold. This excess of pWAT was associated with adipocyte hypertrophy and overexpression of lipogenic genes such as C/EBP-alpha (CAAT enhancer binding protein alpha), PPAR-gamma (peroxisome proliferator-activated receptor gamma), SREBP-1C (sterol regulatory element binding protein-1C), LPL (lipoprotein lipase), FAS (fatty acid synthase), and SCD-1 (stearoyl-CoA desaturase 1). In addition, gene expression of SREBP-1C, FAS, and ACC (acetyl-CoA carboxylase) was also increased in liver from BPA-exposed females at PND21, without a change in circulating lipids and glucose. After weaning, perinatal BPA exposure predisposed to overweight in a sex- and diet-dependent manner. We observed no change in food intake due to perinatal BPA exposure in rats on either standard chow or a high-fat diet. CONCLUSIONS: Perinatal exposure to a low dose of BPA increased adipogenesis in females at weaning. Adult body weight may be programmed during early life, leading to changes dependent on the sex and the nutritional status. Although further studies are required to understand the mechanisms of BPA action in early life, these results are particularly important with regard to the increasing prevalence of childhood obesity and the context-dependent action of endocrine disruptors

    WNT11, a new gene associated with early-onset osteoporosis, is required for osteoblastogenesis.

    Full text link
    Monogenic early-onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in WNT11 (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217G > A p.Ala73Thr) and (NM_004626.2:c.865G > A p.Val289Met) in a 51-year-old woman and in a 61-year-old woman respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor LGR5, was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but WNT3A recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2-LGR5 complex via the non-canonical Wnt pathway

    Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology 149

    Get PDF
    ABSTRACT Despite medical advice, 20% to 30% of female smokers continue to smoke during pregnancy. Epidemiological studies have associated maternal smoking with increased risk of obesity and type-2 diabetes in the offspring. In the present study, we investigated the impact of prenatal nicotine exposure (3mg/kg in Sprague-Dawley rats via osmotic Alzet minipumps) on the early endocrine pancreas and adipose tissue development in rat pups before weaning. Body weight, fat deposition, food intake and food efficiency, cold tolerance, spontaneous physical activity, glucose utilization and insulin sensitivity were also examined at adulthood. Prenatal nicotine exposure led to a decrease in endocrine pancreatic islet size and number at 7 days of life (PND7) which corroborates with a decrease in gene expression of specific transcription factors such as Pdx-1, Pax-6, Nkx6.1 and of hormones such as insulin and glucagon. The prenatal nicotine exposure also led to an increase in epididymal white adipose tissue (eWAT) weight at weaning (PND21), and marked hypertrophy of adipocytes, with increased gene expression of proadipogenic transcription factors such as C/EBP-α, PPAR-γ and SREBP-1C. These early tissue alterations led to significant metabolic consequences, as shown by increased body weight and fat deposition, increased food efficiency on high fat diet, cold intolerance, reduced physical activity, glucose intolerance combined with insulin resistance observed at adulthood. These results prove a direct association between fetal nicotine exposure and offspring metabolic syndrome with early signs of dysregulations of adipose tissue and pancreatic development

    A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold

    Get PDF
    Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival

    Rapid response to the M_w 4.9 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France

    Get PDF
    On November 11, 2019, a Mw 4.9 earthquake hit the region close to Montelimar (lower Rhône Valley, France), on the eastern margin of the Massif Central close to the external part of the Alps. Occuring in a moderate seismicity area, this earthquake is remarkable for its very shallow focal depth (between 1 and 3 km), its magnitude, and the moderate to large damages it produced in several villages. InSAR interferograms indicated a shallow rupture about 4 km long reaching the surface and the reactivation of the ancient NE-SW La Rouviere normal fault in reverse faulting in agreement with the present-day E-W compressional tectonics. The peculiarity of this earthquake together with a poor coverage of the epicentral region by permanent seismological and geodetic stations triggered the mobilisation of the French post-seismic unit and the broad French scientific community from various institutions, with the deployment of geophysical instruments (seismological and geodesic stations), geological field surveys, and field evaluation of the intensity of the earthquake. Within 7 days after the mainshock, 47 seismological stations were deployed in the epicentral area to improve the Le Teil aftershocks locations relative to the French permanent seismological network (RESIF), monitor the temporal and spatial evolution of microearthquakes close to the fault plane and temporal evolution of the seismic response of 3 damaged historical buildings, and to study suspected site effects and their influence in the distribution of seismic damage. This seismological dataset, completed by data owned by different institutions, was integrated in a homogeneous archive and distributed through FDSN web services by the RESIF data center. This dataset, together with observations of surface rupture evidences, geologic, geodetic and satellite data, will help to unravel the causes and rupture mechanism of this earthquake, and contribute to account in seismic hazard assessment for earthquakes along the major regional Cévenne fault system in a context of present-day compressional tectonics

    Heat transfer in a swirling fluidized bed with Geldart type-D particles

    Get PDF
    A relatively new variant in fluidized bed technology, designated as the swirling fluidized bed (SFB), was investigated for its heat transfer characteristics when operating with Geldart type D particles. Unlike conventional fluidized beds, the SFB imparts secondary swirling motion to the bed to enhance lateral mixing. Despite its excellent hydrodynamics, its heat transfer characteristics have not been reported in the published literature. Hence, two different sizes of spherical PVC particles (2.61mm and 3.65mm) with the presence of a center body in the bed have been studied at different velocities of the fluidizing gas. The wall-to-bed heat transfer coefficients were measured by affixing a thin constant foil heater on the bed wall. Thermocouples located at different heights on the foil show a decrease in the wall heat transfer coefficient with bed height. It was seen that only a discrete particle model which accounts for the conduction between the particle and the heat transfer surface and the gas-convective augmentation can adequately represent the mechanism of heat transfer in the swirling fluidized bed
    corecore