10 research outputs found

    Solvent effects on structural and thermochemical properties of p53 tumor-suppressor gene: a molecular modeling approach in drug design

    Get PDF
    The p53 tumor-suppressor protein is a cellular phosphoprotein and a negative regulator of cell growth. Most p53 mutations occur in exons 5–8 within the DNA-binding domain. Therefore, p53 can potentially be targeted with novel drugs designed to bind to a mutation and restore its stability or wild-type conformation. For the current study, Hartree–Fock calculations were used to investigate the solvent-induced effects of five different solvent media (acetone, ethanol, methanol, dimethyl sulfoxide, and water) on the thermochemical parameters and relative energies, and on the multinuclear nuclear magnetic resonance shielding tensors of oxygen, nitrogen, and phosphorus nuclei, of GAT. To understand how the solvent affects the mutation region (the “hot spot”) of p53, the relative energies of GAT in selected solvent media were determined. Some biological evidence suggested the structural stabilities of hot spots of GAT have the optimum temperature and solvent type for mutation. All the authors’ findings are in accordance with common biological phenomena. Another important objective of this study was to compare the hydration Gibbs free energies of CUA and GAT in water using two different approaches where the solvent was treated as a continuum of the constant at different levels of Hartree–Fock theory. The Gibbs hydration energy values obtained in water with the polarized continuum model directly applied on the isolated CUA and GAT sequences were compared with those determined from the hydrated models with four, six, and eight water molecule clusters around the hot spots uracil and adenine. The clustered structures of water molecules around the hot spots of GAT (in DNA level) and CUA (in transcriptional level) were found to be energetically favored. The results of this study provide a reliable insight into the nature of mutation processes, which is of utmost importance for the study of biochemical structures, and provide a basis for drug design

    Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    Get PDF
    Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC) to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90–150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37∘C) and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of crosslinker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the crosslinker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC). Nanoparticles were more cytotoxic on T47D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the IC50 value of methotrexate on T47D cells in comparison with free methotrexate

    www.mdpi.com/journal/ijms Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    Get PDF
    Abstract: Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles wereInt. J. Mol. Sci. 2011, 12 4592 determined on the LHRH positive and negative cell lines. The internalization of th

    Synthetic and biological identities of polymeric nanoparticles influencing the cellular delivery:An immunological link

    Get PDF
    Enhanced understanding of bio-nano interaction requires recognition of hidden factors such as protein corona, a layer of adsorbed protein around nano-systems. This study compares the biological identity and fingerprint profile of adsorbed proteins on PLGA-based nanoparticles through nano-liquid chromatography-tandem mass spectrometry. The total proteins identified in the corona of nanoparticles (NPs) with different in size, charge and compositions were classified based on molecular mass, isoelectric point and protein function. A higher abundance of complement proteins was observed in modified NPs with an increased size, while NPs with a positive surface charge exhibited the minimum adsorption for immunoglobulin proteins. A correlation of dysopsonin/opsonin ratio was found with cellular uptake of NPs exposed to two positive and negative Fc receptor cell lines. Although the higher abundance of dysopsonins such as apolipoproteins may cover the active sites of opsonins causing a lower uptake, the correlation of adsorbed dysopsonin/opsonin proteins on the NPs surface has an opposite trend with the intensity of cell uptake. Despite the reduced uptake of corona-coated NPs in comparison with pristine NPs, the dysopsonin/opsonin ratio controlled by the physicochemistry properties of NPs could potentially be used to tune up the cellular delivery of polymeric NPs. (C) 2019 Elsevier Inc. All rights reserved
    corecore