154 research outputs found

    Quality control in microarray assessment of gene expression in human airway epithelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology provides a powerful tool for defining gene expression profiles of airway epithelium that lend insight into the pathogenesis of human airway disorders. The focus of this study was to establish rigorous quality control parameters to ensure that microarray assessment of the airway epithelium is not confounded by experimental artifact. Samples (total n = 223) of trachea, large and small airway epithelium were collected by fiberoptic bronchoscopy of 144 individuals and hybridized to Affymetrix microarrays. The pre- and post-chip quality control (QC) criteria established, included: (1) RNA quality, assessed by RNA Integrity Number (RIN) ≥ 7.0; (2) cRNA transcript integrity, assessed by signal intensity ratio of GAPDH 3' to 5' probe sets ≤ 3.0; and (3) the multi-chip normalization scaling factor ≤ 10.0.</p> <p>Results</p> <p>Of the 223 samples, all three criteria were assessed in 191; of these 184 (96.3%) passed all three criteria. For the remaining 32 samples, the RIN was not available, and only the other two criteria were used; of these 29 (90.6%) passed these two criteria. Correlation coefficients for pairwise comparisons of expression levels for 100 maintenance genes in which at least one array failed the QC criteria (average Pearson r = 0.90 ± 0.04) were significantly lower (p < 0.0001) than correlation coefficients for pairwise comparisons between arrays that passed the QC criteria (average Pearson r = 0.97 ± 0.01). Inter-array variability was significantly decreased (p < 0.0001) among samples passing the QC criteria compared with samples failing the QC criteria.</p> <p>Conclusion</p> <p>Based on the aberrant maintenance gene data generated from samples failing the established QC criteria, we propose that the QC criteria outlined in this study can accurately distinguish high quality from low quality data, and can be used to delete poor quality microarray samples before proceeding to higher-order biological analyses and interpretation.</p

    How to minimise the effect of tumour cell content in detection of aberrant genetic markers in neuroblastoma

    Get PDF
    Background:Clinical heterogeneity reflects the complexity of genetic events associated with neuroblastoma (NB). To identify the status of all described genetic loci with possible prognostic interest, high-throughput approaches have been used, but only with tumour cell content >60%. In some tumours, necrotic, haemorrhagic and/or calcification areas influence the low amount of neuroblasts. We evaluated the effect of tumour cell content in the detection of relevant aberrant genetic markers (AGM) diagnosed by fluorescence in situ hybridisation (FISH) on tissue microarrays (TMA) in NB.Methods:Two hundred and thirty-three MYCN non-amplified primary NB included in 12 TMAs were analysed.Results:Presence of AGM reduced event-free survival (EFS) (P=0.004) as well as overall survival (OS) (P=0.004) of patients in the whole cohort. There were no differences in prognostic impact of presence of AGM according to tumour cell content.Conclusion:We propose the use of FISH to diagnose AGM of all NB samples having the above-mentioned areas to determine patient risk

    Age-dependency of the prognostic impact of tumor genomics in localized resectable MYCN non-amplified neuroblastomas Report from the SIOPEN Biology Group on the LNESG Trials

    Get PDF
    BACKGROUND: Biology based treatment reduction, i.e. surgery alone also in case of not totally resected tumors, was advised in neuroblastoma patients with localized resectable disease without MYCN amplification. However, whether the genomic background of these tumors may influence outcome was unknown and therefore scrutinized in a meta-analysis comprising two prospective therapy studies and a ‘validation’ cohort. PATIENTS AND METHODS: Diagnostic samples were derived from 406 INSS stages 1/2A/2B tumors from three cohorts: LNESGI/II and COG. Genomic data were analyzed in two age groups (cut-off: 18 months) and quality controlled by the SIOPEN Biology Group. RESULTS: In both patient age groups stage 2 tumors led to similarly reduced event-free survival (5y-EFS: 83+3% versus 80+4%), but overall survival was only decreased in patients >18m (5y-OS: 97+1% versus 87+4%; p=0.001). In the latter age subgroup, only tumors with SCA led to relapses, with 11q loss as the strongest marker (5y-EFS: 40+15% versus 89+5%; p18m but not <18m. CONCLUSION: The tumor genomic make-up of resectable non-MYCN amplified stage 2 neuroblastomas has a distinct age-dependent prognostic impact in neuroblastoma patients. While in the younger age group tumors with unfavourable (SCA) and favorable genetics showed relapses, both without worsening OS, in the older age group only tumors with unfavorable genetics led to relapses and decreased OS.N/

    CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes.</p> <p>Methods</p> <p>To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing.</p> <p>Results</p> <p>Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed <it>CADM1 </it>as a compelling candidate gene. Meta-analysis indicated that <it>CADM1 </it>expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines.</p> <p>Conclusion</p> <p>Our study puts <it>CADM1 </it>forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of <it>CADM1 </it>in neuroblastoma development and to investigate the possibility of <it>CADM1 </it>haploinsufficiency in neuroblastoma.</p

    Factors associated with recurrence and survival length following relapse in patients with neuroblastoma

    Get PDF
    Background: Despite therapeutic advances, survival following relapse for neuroblastoma patients remains poor. We investigated clinical and biological factors associated with length of progression-free and overall survival following relapse in UK neuroblastoma patients. Methods: All cases of relapsed neuroblastoma, diagnosed during 1990-2010, were identified from four Paediatric Oncology principal treatment centres. Kaplan-Meier and Cox regression analyses were used to calculate post-relapse overall survival (PROS), post-relapse progression-free survival (PRPFS) between relapse and further progression, and to investigate influencing factors. Results: One hundred eighty-nine cases were identified from case notes, 159 (84.0%) high risk and 17 (9.0%), unresectable, MYCN non-amplified (non-MNA) intermediate risk (IR). For high-risk patients diagnosed >2000, median PROS was 8.4 months (interquartile range (IQR)=3.0-17.4) and median PRPFS was 4.7 months (IQR=2.1-7.1). For IR, unresectable non-MNA patients, median PROS was 11.8 months (IQR 9.0-51.6) and 5-year PROS was 24% (95% CI 7-45%). MYCN amplified (MNA) disease and bone marrow metastases at diagnosis were independently associated with worse PROS for high-risk cases. Eighty percent of high-risk relapses occurred within 2 years of diagnosis compared with 50% of unresectable non-MNA IR disease. Conclusions: Patients with relapsed HR neuroblastomas should be treatment stratified according to MYCN status and PRPFS should be the primary endpoint in early phase clinical trials. The failure to salvage the majority of IR neuroblastoma is concerning, supporting investigation of intensification of upfront treatment regimens in this group to determine whether their use would diminish likelihood of relapse

    An integrated Bayesian analysis of LOH and copy number data

    Get PDF
    Background: Cancer and other disorders are due to genomic lesions. SNP-microarrays are able to measure simultaneously both genotype and copy number (CN) at several Single Nucleotide Polymorphisms (SNPs) along the genome. CN is defined as the number of DNA copies, and the normal is two, since we have two copies of each chromosome. The genotype of a SNP is the status given by the nucleotides (alleles) which are present on the two copies of DNA. It is defined homozygous or heterozygous if the two alleles are the same or if they differ, respectively. Loss of heterozygosity (LOH) is the loss of the heterozygous status due to genomic events. Combining CN and LOH data, it is possible to better identify different types of genomic aberrations. For example, a long sequence of homozygous SNPs might be caused by either the physical loss of one copy or a uniparental disomy event (UPD), i.e. each SNP has two identical nucleotides both derived from only one parent. In this situation, the knowledge of the CN can help in distinguishing between these two events. Results: To better identify genomic aberrations, we propose a method (called gBPCR) which infers the type of aberration occurred, taking into account all the possible influence in the microarray detection of the homozygosity status of the SNPs, resulting from an altered CN level. Namely, we model the distributions of the detected genotype, given a specific genomic alteration and we estimate the parameters involved on public referenc

    Detection of GD2-positive cells in bone marrow samples and survival of patients with localised neuroblastoma

    Get PDF
    The impact of bone marrow (BM) GD2-positive cells on survival has been evaluated in 145 Italian children with localised neuroblastoma (NB) evaluated at diagnosis by anti-GD2 immunocytochemistry. Nineteen of these (13.1%) were found to be BM GD2-positive, with the number of positive cells ranging between 1 and 155 out of 1 × 106 total cells analysed. Seven/19 (38.8%) GD2-positive vs 12/126 (9.5%) GD2-negative patients relapsed. The 5-year event-free survival (EFS) and overall survival of the GD2-positive patients was significantly worse than that of the GD2-negative ones (62.2 vs 89.9%, P<0.001; and 74.9 vs 95.9%, P=0.005, respectively). GD2 positivity was not associated to other known risk factors, and in particular to Myc-N amplification and 1p deletion. Among Myc-N-negative patients, the EFS of those negative for both GD2 and 1p deletion was significantly better than in children positive for either one of these two markers (EFS=96.9 vs 66.0%, P<0.001). In conclusion, GD2 positivity may represent a prognostic marker for patients with non-metastatic NB without Myc-N amplification, and its combination with genetic alterations might help identifying patients that require a more careful follow-up
    corecore