Age-dependency of the prognostic impact of tumor genomics in localized resectable MYCN non-amplified neuroblastomas

Report from the SIOPEN Biology Group on the LNESG Trials

Ambros IM^1 , Tonini GP^2 , $Gross \, N^3$, $Mosseri \, V^4$, $P\"otschger \, U^1$, $Beiske \, K^5$, $Berbegall \, AP^6$, $B\'enard \, J^7$, $Bown \, N^8$, $Caron \, H^9$, $Combaret \, V^{10}$, $Couturier \, J^{11}$, $Defferrari \, R^{12}$, $Delattre \, O^{13}$, $Jeison \, M^{14}$, $Kogner \, P^{15}$, $Lunec \, J^{16}$, $Marques \, B^{17}$, $Martinsson \, T^{18}$, $Mazzocco \, K^{12}$, $Noguera \, R^6$, $Schleiermacher \, G^{13,19}$, $Valent \, A^7$, $Van \, Roy \, N^{20}$, $Villamon \, E^6$, $Valena \, D^4$, Va

BACKGROUND

Biology based treatment reduction, i.e. surgery alone also in case of not totally resected tumors, was advised in neuroblastoma patients with localized resectable disease without MYCN amplification. However, whether the genomic background of these tumors may influence outcome was unknown and therefore scrutinized in a meta-analysis comprising two prospective therapy studies and a 'validation' cohort.

PATIENTS AND METHODS

Diagnostic samples were derived from 406 INSS stages 1/2A/2B tumors from three cohorts: LNESGI/II and COG. Genomic data were analyzed in two age groups (cut-off: 18 months) and quality controlled by the SIOPEN Biology Group.

RESULTS

¹CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria

²Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy

³Pediatric Oncology Research, Department of Pediatrics, University Hospital, Lausanne, Switzerland

⁴Service de Biostatistiques, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France

⁵Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway

⁶Department of Pathology, Medical School of Valencia, University of Valencia, Valencia, Spain

⁷Département de Biologie et de Pathologie médicales, Service de Pathologie Moléculaire, Institut Gustave Roussy, Villejuif,

⁸Northern Genetics Service, Newcastle upon Tyne, United Kingdom

⁹Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center, Amsterdam, the Netherlands

¹⁰Centre Léon Bérard, Laboratoire de Recherche Translationnelle, Lyon, France

¹¹Unité de Génétique Somatique et Cytogénétique, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France

¹²Department of Pathology, Istituto G. Gaslini, Genova, Italy

¹³INSERM U830, Laboratoire de Génétique et Biologie des Cancers, 26 rue d'Ulm, 75248 Paris Cedex 05, France

¹⁴Ca-Cytogenetic Lab., Pediatric Hematology Oncology Dept., Schneider Children's Medical Center of Israel, Israel ¹⁵Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Stockholm, Sweden

¹⁶ Northern Institute for Cancer Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne,

Centro de Genética Humana, Instituto Nacional de Saude doutor Ricardo Jorge, Lisboa, Portugal

¹⁸Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden

⁹Département de Pédiatrie, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France

²⁰Center for Medical Genetics, Ghent University Hospital, Gent, Belgium

²¹Division of Oncology, The Children's Hospital of Philadelphia, CTRB, Room 3020, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4318, USA

²²Section for Paediatric Surgery, Division of Surgery, Rikshospitalet University Hospital, Oslo, Norway

²³Department of Paediatric Surgery, St George's Hospital, London, UK

²⁴Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Villejuif Cedex, France Cedex

²⁵Research, Royal Marsden Hospital, Sutton, Surrey, United Kingdom

²⁶Unidad de Oncologia Pediatrica Hospital Universitario La Fe, Valencia, Spain

²⁷Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom

²⁸Seattle Children's Hospital and University of Washington School of Medicine, Seattle, WA

²⁹Department of Pediatrics, The University of Chicago, Chicago

³⁰Dept. of Pediatrics, Medical University of Vienna, Austria

³¹Pediatric Hematology Oncology Unit, University Hospital CHUV, Lausanne, Switzerland

³²Department of Paediatric Haematology and Oncology, Giannina Gaslini Children's Hospital, Genova, Italy

In both patient age groups stage 2 tumors led to similarly reduced event-free survival (5y-EFS: $83\pm3\%$ versus $80\pm4\%$), but overall survival was only decreased in patients $\geq18m$ (5y-OS: $97\pm1\%$ versus $87\pm4\%$; p=0.001). In the latter age subgroup, only tumors with SCA led to relapses, with 11q loss as the strongest marker (5y-EFS: $40\pm15\%$ versus $89\pm5\%$; p<0,001). Below 18m, EFS but not OS was decreased only in case of 1p loss (5y-EFS: $62\pm13\%$ versus $85\pm3\%$; p=0,041). SCAs were associated with worse OS only in patients $\geq18m$ but not <18m.

CONCLUSION

The tumor genomic make-up of resectable non-MYCN amplified stage 2 neuroblastomas has a distinct age-dependent prognostic impact in neuroblastoma patients. While in the younger age group tumors with unfavourable (SCA) and favorable genetics showed relapses, both without worsening OS, in the older age group only tumors with unfavorable genetics led to relapses and decreased OS.