24,471 research outputs found
A U(1) Gauge Theory for Antisymmetric Tensor Fields
We show that a U(1) gauge theory defined in the configuration space for
closed p-branes yields the gauge theory of a massless rank-(p+1) antisymmetric
tensor field and the Stueckelberg formalism for a massive vector field.Comment: 8 pages, Te
Security risk assessment and protection in the chemical and process industry
This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including: management and procedures, security technology (e.g. CCTV, fences, and access control), and human interactions (pro-active as well as re-active). The method is illustrated in a case-study where a practical protection plan was developed for an existing chemical company. This chapter demonstrates that the method is useful for similar chemical- and process industrial activities far beyond the Belgian borders, as well as for cross-industrial security protection. This chapter offers an insight into how the chemical sector protects itself on the one hand, and an insight into how security risk management can be practiced on the other hand
A framework for the selection of the right nuclear power plant
Civil nuclear reactors are used for the production of electrical energy. In the nuclear industry vendors propose several nuclear reactor designs with a size from 35–45 MWe up to 1600–1700 MWe. The choice of the right design is a multidimensional problem since a utility has to include not only financial factors as levelised cost of electricity (LCOE) and internal rate of return (IRR), but also the so called “external factors” like the required spinning reserve, the impact on local industry and the social acceptability. Therefore it is necessary to balance advantages and disadvantages of each design during the entire life cycle of the plant, usually 40–60 years. In the scientific literature there are several techniques for solving this multidimensional problem. Unfortunately it does not seem possible to apply these methodologies as they are, since the problem is too complex and it is difficult to provide consistent and trustworthy expert judgments. This paper fills the gap, proposing a two-step framework to choosing the best nuclear reactor at the pre-feasibility study phase. The paper shows in detail how to use the methodology, comparing the choice of a small-medium reactor (SMR) with a large reactor (LR), characterised, according to the International Atomic Energy Agency (2006), by an electrical output respectively lower and higher than 700 MWe
Observation of individual molecules trapped on a nanostructured insulator
For the first time, ordered polar molecules confined in monolayer-deep
rectangular pits produced on an alkali halide surface by electron irradiation
have been resolved at room temperature by non-contact atomic force microscopy.
Molecules self-assemble in a specific fashion inside pits of width smaller than
15 nm. By contrast no ordered aggregates of molecules are observed on flat
terraces. Conclusions regarding nucleation and ordering mechanisms are drawn.
Trapping in pits as small as 2 nm opens a route to address single molecules
A Review of Dietary Zinc Recommendations
Background. Large discrepancies exist among the dietary zinc recommendations set by expert groups.
Objective. To understand the basis for the differences in the dietary zinc recommendations set by the World Health Organization, the U.S. Institute of Medicine, the International Zinc Nutrition Consultative Group, and the European Food Safety Agency.
Methods. We compared the sources of the data, the concepts, and methods used by the four expert groups to set the physiological requirements for absorbed zinc, the dietary zinc requirements (termed estimated and/or average requirements), recommended dietary allowances (or recommended nutrient intakes or population reference intakes), and tolerable upper intake levels for selected age, sex, and life-stage groups.
Results. All four expert groups used the factorial approach to estimate the physiological requirements for zinc. These are based on the estimates of absorbed zinc required to offset all obligatory zinc losses plus any additional requirements for absorbed zinc for growth, pregnancy, or lactation. However, discrepancies exist in the reference body weights used, studies selected, approaches to estimate endogenous zinc losses, the adjustments applied to derive dietary zinc requirements that take into account zinc bioavailability in the habitual diets, number of dietary zinc recommendations set, and the nomenclature used to describe them.
Conclusions. Estimates for the physiological and dietary requirements varied across the four expert groups. The European Food Safety Agency was the only expert group that set dietary zinc recommendations at four different levels of dietary phytate for adults (but not for children) and as yet no tolerable upper intake level for any life-stage group
Ensembles of climate change models for risk assessment of nuclear power plants
Climate change affects technical Systems, Structures and Infrastructures (SSIs), changing the environmental context for which SSI were originally designed. In order to prevent any risk growth beyond acceptable levels, the climate change effects must be accounted for into risk assessment models. Climate models can provide future climate data, such as air temperature and pressure. However, the reliability of climate models is a major concern due to the uncertainty in the temperature and pressure future projections. In this work, we consider five climate change models (individually unable to accurately provide historical recorded temperatures and, thus, also future projections), and ensemble their projections for integration in a probabilistic safety assessment, conditional on climate projections. As case study, we consider the Passive Containment Cooling System (PCCS) of two AP1000 Nuclear Power Plants (NPPs). Results provided by the different ensembles are compared. Finally, a risk-based classification approach is performed to identify critical future temperatures, which may lead to PCCS risks beyond acceptable levels
- …
