18,506 research outputs found

    Use of synchrotron tomographic techniques in the assessment of diffusion parameters for solute transport in groundwater flow

    Get PDF
    This technical note describes the use of time-resolved synchrotron radiation tomographic energy dispersive diffraction imaging (TEDDI) and tomographic X-ray fluorescence (TXRF) for examining ion diffusion in porous media. The technique is capable of tracking the diffusion of several ion species simultaneously. This is illustrated by results which compare the movement of Cs+, Ba2+ and La3+ ions from solution into a typical sample of English chalk. The results exhibited somewhat anomalous (non-Fickian) behaviour and revealed heterogeneities (in 1D) on the scale of a few millimetres

    Suppression of line voltage related distortion in current controlled grid connected inverters

    Get PDF
    The influence of selected control strategies on the level of low-order current harmonic distortion generated by an inverter connected to a distorted grid is investigated through a combination of theoretical and experimental studies. A detailed theoretical analysis, based on the concept of harmonic impedance, establishes the suitability of inductor current feedback versus output current feedback with respect to inverter power quality. Experimental results, obtained from a purpose-built 500-W, three-level, half-bridge inverter with an L-C-L output filter, verify the efficacy of inductor current as the feedback variable, yielding an output current total harmonic distortion (THD) some 29% lower than that achieved using output current feedback. A feed-forward grid voltage disturbance rejection scheme is proposed as a means to further reduce the level of low-order current harmonic distortion. Results obtained from an inverter with inductor current feedback and optimized feed-forward disturbance rejection show a THD of just 3% at full-load, representing an improvement of some 53% on the same inverter with output current feedback and no feed-forward compensation. Significant improvements in THD were also achieved across the entire load range. It is concluded that the use of inductor current feedback and feed-forward voltage disturbance rejection represent cost–effect mechanisms for achieving improved output current quality

    Elimination of subharmonics in direct look-up table (DLT) sine wave reference generators for low-cost microprocessor-controlled inverters

    Get PDF
    This paper investigates distortion of an inverter reference waveform generated using a direct look-up (DLT) algorithm. The sources of various distortion components are identified and the implications for application to variable speed drives and grid connected inverters are described. Harmonic and subharmonic distortion mechanisms are analyzed, and compared with experimental results. Analytical methods are derived to determine the occurrence of subharmonics, their number, frequencies and maximum amplitudes. A relationship is established identifying a discrete set of synthesizable frequencies which avoid sub-harmonic distortion as a function of look-up table length and a practical method for calculation of the look-up table indices, based on finite length binary representation, is presented. Real time experimental results are presented to verify the analytical derivations

    Inter-sensory Judgments of Signal Duration

    Get PDF
    Intersensory discrimination of signal duration using visual and auditory signal

    Multimode switching induced by a transverse field planar magnetic nanowires

    Get PDF
    We report how transverse fields affect the axial field needed to "inject" domain walls from a large Permalloy (Ni80Fe20) pad into planar nanowires of width 184 nm, 303 nm, 321 nm, and 537 nm fabricated by electron beam lithography. For the narrowest wire, different switching fields are observed under the same transverse field conditions, indicating that more than one mode or state for the domain walls may exist. In contrast, in the widest wires a transverse field causes each reversal event to occur in two stages. The different response may be attributed to the magnetostatic energy differences of domain walls in wires of different widths

    Tuning the developing brain to emotional body expressions

    Get PDF
    Reading others’ emotional body expressions is an essential social skill. Adults readily recognize emotions from body movements. However, it is unclear when in development infants become sensitive to bodily expressed emotions. We examined event-related brain potentials (ERPs) in 4- and 8-month-old infants in response to point-light displays (PLDs) of happy and fearful body expressions presented in two orientations (upright and inverted). The ERP results revealed that 8-month-olds but not 4-month olds respond sensitively to the orientation and the emotion of the dynamic expressions. Specifically, 8-month-olds showed (i) an early (200–400 ms) orientation-sensitive positivity over frontal and central electrodes, and (ii) a late (700–1100 ms) emotion-sensitive positivity over temporal and parietal electrodes in the right hemisphere. These findings suggest that orientation-sensitive and emotion-sensitive brain processes, distinct in timing and topography, develop between 4 and 8 months of age

    Multiplicative renormalizability of gluon and ghost propagators in QCD

    Get PDF
    We reformulate the coupled set of continuum equations for the renormalized gluon and ghost propagators in QCD, such that the multiplicative renormalizability of the solutions is manifest, independently of the specific form of full vertices and renormalization constants. In the Landau gauge, the equations are free of renormalization constants, and the renormalization point dependence enters only through the renormalized coupling and the renormalized propagator functions. The structure of the equations enables us to devise novel truncations with solutions that are multiplicatively renormalizable and agree with the leading order perturbative results. We show that, for infrared power law behaved propagators, the leading infrared behavior of the gluon equation is not solely determined by the ghost loop, as concluded in previous studies, but that the gluon loop, the three-gluon loop, the four-gluon loop, and even massless quarks also contribute to the infrared analysis. In our new Landau gauge truncation, the combination of gluon and ghost loop contributions seems to reject infrared power law solutions, but massless quark loops illustrate how additional contributions to the gluon vacuum polarization could reinstate these solutions. Moreover, a schematic study of the three-gluon and four-gluon loops shows that they too need to be considered in more detail before a definite conclusion about the existence of infrared power behaved gluon and ghost propagators can be reached.Comment: 13 pages, 1 figure, submitted to Phys. Rev.

    Extinction of impurity resonances in large-gap regions of inhomogeneous d-wave superconductors

    Full text link
    Impurity resonances observed by scanning tunneling spectroscopy in the superconducting state have been used to deduce properties of the underlying pure state. Here we study a longstanding puzzle associated with these measurements, the apparent extinction of these resonances for Ni and Zn impurities in large-gap regions of the inhomogeneous BSCCO superconductor. We calculate the effect of order parameter and hopping suppression near the impurity site, and find that these two effects are sufficient to explain the missing resonances in the case of Ni. There are several possible scenarios for the extinction of the Zn resonances, which we discuss in turn; in addition, we propose measurements which could distinguish among them.Comment: 10 pages, 8 figure

    Domain-specific textual meta-modelling languages for model driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-31491-9_20Proceedings of 8th European Conference, ECMFA 2012, Kgs. Lyngby, Denmark, July 2-5, 2012Domain-specific modelling languages are normally defined through general-purpose meta-modelling languages like the MOF. While this is satisfactory for many Model-Driven Engineering (MDE) projects, several researchers have identified the need for domain-specific meta-modelling (DSMM) languages providing customised meta-modelling primitives aimed at the definition of modelling languages in a specific domain, as well as the construction of meta-model families. In this paper, we discuss the potential of multi-level meta-modelling for the systematic engineering of DSMM architectures. For this purpose, we present: (i) several primitives and techniques to control the meta-modelling facilities offered to the users of the DSMM languages, (ii) a flexible approach to define textual concrete syntaxes for DSMM languages, (iii) extensions to model management languages enabling the practical use of DSMM in MDE, and (iv) an implementation of these ideas in the metaDepth tool.This work was funded by the Spanish Ministry of Economy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D programme of the Madrid Region (project “e-Madrid” S2009/TIC-1650
    • …
    corecore