429 research outputs found

    Genome-wide RNA sequencing of ocular fibroblasts from glaucomatous and normal eyes: Implications for glaucoma management

    Get PDF
    Primary open angle glaucoma is a leading cause of visual impairment and blindness which is commonly treated with drugs or laser but may require surgery. Tenon’s ocular fibroblasts are involved in wound-healing after glaucoma filtration surgery and may compromise a favourable outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene expression and key pathways contributing to the glaucomatous state we performed genome-wide RNA sequencing. Human Tenon’s ocular fibroblasts were cultured from normal and glaucomatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-Seq performed on the Illumina platform. Differentially expressed genes were identified using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in biological functions and pathways were determined using Enrichr and clustered using Cytoscape. A total of 5817 genes were differentially expressed between Tenon’s ocular fibroblasts from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly different biological functions and pathways which were clustered into 176 clusters. Tenon’s ocular fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast transdifferentiation and associated changes in mitochondrial fission, remodeling of the extracellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma therapies. Altered gene expression in glaucomatous Tenon’s ocular fibroblasts may contribute to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-wide transcriptome of glaucomatous versus normal Tenon’s ocular fibroblasts which may identify genes or pathways of therapeutic value to improve surgical outcomes

    Genome-Wide RNA Sequencing of Human Trabecular Meshwork Cells Treated with TGF-ÎČ1: Relevance to Pseudoexfoliation Glaucoma

    Get PDF
    Pseudoexfoliation glaucoma (XFG) is an aggressive form of secondary open angle glaucoma, characterised by the production of exfoliation material and is estimated to affect 30 million people worldwide. Activation of the TGF-β pathway by TGF-β1 has been implicated in the pathogenesis of pseudoexfoliation glaucoma. To further investigate the role of TGF-β1 in glaucomatous changes in the trabecular meshwork (TM), we used RNA-Seq to determine TGF-β1 induced changes in the transcriptome of normal human trabecular meshwork (HTM) cells. The main purpose of this study was to perform a hypothesis-independent RNA sequencing analysis to investigate genome-wide alterations in the transcriptome of normal HTMs stimulated with TGF-β1 and investigate possible pathophysiological mechanisms driving XFG. Our results identified multiple differentially expressed genes including several genes known to be present in exfoliation material. Significantly altered pathways, biological processes and molecular functions included extracellular matrix remodelling, Hippo and Wnt pathways, the unfolded protein response, oxidative stress, and the antioxidant system. This cellular model of pseudoexfoliation glaucoma can provide insight into disease pathogenesis and support the development of novel therapeutic interventions

    Extensive Aerosol Optical Properties and Aerosol Mass Related Measurements During TRAMP/TexAQS 2006 – Implications for PM Compliance and Planning

    Get PDF
    Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM2.5air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center

    Size matters: the value of small populations for wintering waterbirds

    Get PDF
    Protecting systematically selected areas of land is a major step towards biodiversity conservation worldwide. Indeed, the identification and designation of protected areas more often than not forms a core component of both national and international conservation policies. In this paper we provide an overview of those Special Protection Areas and Ramsar Sites that have been classified in Great Britain as of 1998/99 for a selection of wintering waterbird species, using bird count data from the Wetland Bird Survey. The performance of this network of sites is remarkable, particularly in comparison with published analyses of networks elsewhere in the world. Nevertheless, the current site-based approach, whilst having the great benefit of simplicity, is deliberately biased towards aggregating species at the expense of the more dispersed distribution species. To ensure that the network continues successfully to protect nationally and internationally important waterbird populations, efforts now need to concentrate on the derivation of species-specific representation targets and, in particular, the ways in which these can be incorporated into the site selection process. Although these analyses concern the performance of protected areas for waterbirds in Great Britain, the results have wide-ranging importance for conservation planning in general and the design of protected area networks

    The structure of tris(chloromethyl)amine in the gas phase using quantum chemical calculations and gas electron diffraction and as a solid and melt using Raman spectroscopy

    Get PDF
    The equilibrium structure of tris(chloromethyl)amine, N(CH2Cl)3, has been determined in the gas phase using electron diffraction. Single-step distance corrections (representing the differences between the interatomic distances from the equilibrium structure and those from the vibrationally averaged structure) and amplitudes of vibration have been computed using semi-empirical molecular dynamics (SE-MD) simulations in order to treat accurately the description of the low-frequency, large-amplitude vibrational modes associated particularly with one CH2Cl group. A series of complementary theoretical calculations using the SOGGA11-X DFT functional with correlation-consistent basis sets of double-, triple-, and quadruple-ζ quality is also presented. The agreement between the experimental and theoretical equilibrium structural parameters attests to the accuracy of the applied theoretical calculations and of our gas-phase structural solution. Raman spectra have been recorded over a range of temperatures, allowing the solid and the melt to be studied, and the Raman-active intramolecular modes to be identified. Free from the influence of intermolecular interaction, the structure of tris(chloromethyl)amine in the gas phase is markedly different to that reported in the literature for the single crystal. This is discussed, and evidence for the anomeric effect in tris(chloromethyl)amine is evaluated
    • 

    corecore