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Abstract

Primary open angle glaucoma is a leading cause of visual impairment and blindness which is

commonly treated with drugs or laser but may require surgery. Tenon’s ocular fibroblasts are

involved in wound-healing after glaucoma filtration surgery and may compromise a favourable

outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene

expression and key pathways contributing to the glaucomatous state we performed genome-

wide RNA sequencing. Human Tenon’s ocular fibroblasts were cultured from normal and glau-

comatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-

Seq performed on the Illumina platform. Differentially expressed genes were identified using a

bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in

biological functions and pathways were determined using Enrichr and clustered using Cytos-

cape. A total of 5817 genes were differentially expressed between Tenon’s ocular fibroblasts

from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly differ-

ent biological functions and pathways which were clustered into 176 clusters. Tenon’s ocular

fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast

transdifferentiation and associated changes in mitochondrial fission, remodeling of the extra-

cellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which

may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma

therapies. Altered gene expression in glaucomatous Tenon’s ocular fibroblasts may contribute

to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-

wide transcriptome of glaucomatous versus normal Tenon’s ocular fibroblasts which may

identify genes or pathways of therapeutic value to improve surgical outcomes.

Introduction

Glaucoma is a progressive irreversible optic neuropathy characterised by loss of retinal gan-

glion cells ultimately leading to blindness if untreated [1]. The commonest form of glaucoma
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is primary open angle glaucoma (POAG) which had an estimated prevalence of roughly 55

million in 2020 [2, 3]. Risk factors for POAG include age, sex, genetic background and

increased intraocular pressure (IOP); which is an important modifiable risk factor [4, 5].

POAG shows signs of a fibrotic condition [6, 7] and is associated with increased levels of profi-

brotic cytokine TGF-β2 in the aqueous humour [8].

Initial treatment of POAG commonly consists of SLT laser treatment or drugs intended to

lower the IOP such as prostaglandins, β-adrenergic inhibitors and carbonic anhydrase inhibi-

tors [9]. These drugs are usually applied topically in the form of eyedrops and frequently con-

tain preservatives such as benzalkonium chloride (BAC). Unfortunately, BAC is toxic to the

eye and has been associated with fibrosis, cell death, mitochondrial dysfunction, the generation

of reactive oxygen species and DNA damage [9, 10]. During treatment of POAG surgical inter-

vention in the form of glaucoma filtration surgery may be required. The failure rate of this pro-

cedure can be as high as 35% when evaluated after 5 years [11] and success depends on

modulation of the wound healing response and prevention of fibrosis using anti-proliferative

and anti-fibrotic drugs, such as 5-fluorouracil and mitomycin-C [12].

One cell type that is of particular importance in the postoperative wound-healing response

is the Tenon’s ocular fibroblast (TF; also called Tenon’s capsule fibroblast) [13] because it is a

main source of pro-fibrotic myofibroblasts involved in ECM deposition and wound contrac-

tion which may lead to scarring and subsequent bleb failure [12, 14, 15].

Previously it was shown that TFs from glaucomatous patients show signs of fibrosis when

compared to non-glaucomatous patients by considering differential expression of a limited

predefined panel of 10 genes [16]. The main purpose of this study was to perform a hypothe-

sis-independent genome-wide RNA sequencing analysis to obtain a more complete view of the

alterations in the transcriptome of glaucomatous Tenon’s ocular fibroblast (GTF) cells when

compared to normal Tenon’s ocular fibroblasts (NTFs).

Materials and methods

Tenon’s ocular fibroblasts culturing and characterisation

Primary human Tenon’s ocular fibroblasts (TFs) were obtained from patients with POAG and

non-glaucomatous patients during the period 06 Oct 2015 until 28 Feb 2017 using a previously

described standardised method [17, 18]. Patient information can be found in S3 Table. Cells

were maintained in low glucose Dulbecco‘s Modified Eagle Media (DMEM) (Sigma, Gilling-

ham, UK) which was supplemented with 10% fetal calf serum (Biosera, Heathfield, UK) and

2mM L-glutamine (Sigma, Gillingham, UK), Penicillin-Streptomycin (Sigma, Gillingham,

UK), and 2.5 μg/mL Fungizone (amphotericin B, Sigma, Gillingham, UK). The cells were incu-

bated at 37.0 ˚C, 95 % humidity and 5 % CO2. Cells were sub-cultured after reaching roughly

70 % confluency; cultures were used up to passage four. Tenon’s ocular fibroblast characterisa-

tion was carried out by fluorescent staining using a mouse monoclonal antibody (Thermo-

fisher Scientific, USA) against vimentin which is a fibroblast biomarker. Bright focus

microscopy and fluorescent vimentin and DAPI staining cell images of these Tenon’s ocular

fibroblasts were shown previously in another publication by our group in [19].

RNA extraction

Total RNA was obtained from the cultured Tenon’s ocular fibroblasts using the Qiagen

RNeasy Mini Kit (Qiagen, Manchester UK) following the manufacturer’s instructions. RNA

concentration was determined using the NanoDrop 2000 instrument (Thermofisher Scientific,

Horsham, UK). RNA quality was assessed using the Bioanalyser 2100 (Agilent Technologies,

Stockport, UK) combined with an RNA 6000 Nano Kit (Agilent, Santa Clara, CA, USA).
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RNA sequencing

Generation of sequencing libraries was achieved using the NEBNext Ultra TM RNA library

Prep Kit (NEB, Ipswich, MA, USA). Purification of mRNA was performed using magnetic

poly-T oligo-attached beads. RNA sequencing was done by Genewiz (Genewiz, Bishop’s Stort-

ford, UK) using an Illumina platform thus producing a set of FASTQ files containing paired

end reads.

RNA-Seq data analysis

Quality control of the resulting paired end reads was performed using program FastQC

v0.11.9 [20]. Adaptor removal and quality trimming of reads was done using Cutadapt 3.0 [21]

in a linux environment thus producing high-quality trimmed reads with a Phred quality score

larger than 25 which corresponds to<0.3% base calling error rate. The high-quality adapter-

trimmed reads were aligned to the primary assembly GRCh38 of the human genome sequence

using the STAR aligner 2.7.6a [22]. The source of the primary assembly GRCh38 was the GEN-

CODE comprehensive gene annotation for the primary assembly [23]. To quantify reads per

feature (i.e. gene) the program FeatureCounts 2.0.1 [24] was utilised. This resulted in a table

containing counts per sample and feature/gene. To reduce potential mapping false positives,

genes with an average count-value lower than 100 were removed. Next, the filtered counts

table was used as input to determine differential gene expression which was done using the

program edgeR version 3.32.1 [25] in R studio. This procedure resulted in a gene list contain-

ing false discovery rate (FDR), p-value and counts per million reads mapped (CPM). Genes

with an absolute |log2FC|> 0.26 (which corresponds to at least 20%-fold change) and

FDR< 0.05 were considered to be differentially expressed genes (DEGs). These DEGs were

used for subsequent analysis.

Functional enrichment analysis

Using the resulting list of DEGs, a functional analysis was done using enrichment tool Enrichr

[26]. Enrichr utilises a modified Fisher exact test to determine over-representation of an input

gene list in a.o. gene ontologies and pathway databases. Using Enrichr, functional and pathway

enrichment was determined for pathway databases WikiPathways, KEGG, Reactome, MSigDB

Hallmark genesets and furthermore for Gene Ontology (GO) biological processes and molecu-

lar functions. Pathways or GO terms were assumed to be enriched if the false discovery rate

FDR< 0.01. The resulting enrichment terms tend to show a large amount of overlap and

redundancy which can be partially removed using clustering. To cluster and visualise the func-

tional enrichment results, EnrichmentMap 3.3.4 [27] was used in Cytoscape (version 3.9.1)

combined with AutoAnnotate [28]. To further visualise and investigate interesting enriched

KEGG pathways, pathway gene annotation was performed using Pathview 1.30.1 [29] in R. In

a similar fashion, visualisation of gene expression in pathways from WikiPathways was

achieved using PathVisio [30].

Ethics statement

The study was conducted in accordance with the Declaration of Helsinki, and ethics approval

was obtained from the UK National Research Ethics Service Committee London–Hampstead

(IRAS ID 133402; REC reference 14/LO/1088). Written consent was obtained from all

patients.
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Results

Descriptive features of RNA-Seq data

RNA sequencing of 12 samples that were obtained from 12 different donors resulted in 24.8M

150 bp reads per sample on average. Usually the initial Phred quality score was larger than 25

(which corresponds to a<0.3% base calling error rate) but some reads required modest quality

trimming which was done using the program Cutadapt thus arriving at quality scores which

were guaranteed to be larger than 25. These paired trimmed high-quality reads were mapped

to the genome (GRCh38) with an average mapping percentage of 90%.

Differential gene expression

Using the primary comprehensive gene annotation, paired trimmed high-quality reads were

aligned to the genome sequence of primary assembly GRCh38. Genes with an average low

number of mapped counts < 100 were filtered out. This procedure resulted in a counts-table

for 11,227 aligned genes which were subsequently used to determine differentially expressed

genes using edgeR in Rstudio. Using this program, fold-change (log2FC), log2CPM, false dis-

covery rate (FDR) and p-value per gene were determined.

Fig 1 shows a volcano-plot of all genes in which thresholds were set at FDR = 0.05 and arbi-

trarily |log2FC| = 1.5 to show genes with highest fold-change. Of the total set of 11,227

expressed genes, 5817 were considered to be differentially expressed based on a false discovery

rate FDR<0.05 and an absolute fold change |log2FC|> 0.26 (which corresponds to a fold

change of at least 20%). Of these 5817 genes, 2664 genes were upregulated, and 3153 genes

were downregulated. Housekeeping genes GAPDH and ACTB were not differentially

expressed. Table 1 shows the top 25 upregulated and top 25 downregulated genes based on

Fig 1. Volcano plot identifying differentially expressed genes between glaucomatous and normal Tenon’s ocular

fibroblasts. In this figure grey and green dots represent genes that are not considered to be differentially expressed

because the false discovery rate FDR>0.05, blue dots represent genes which are considered to be differentially

expressed with a FDR<0.05 and |log2FC|� 1.5 while red dots represent genes that are both significantly expressed and

also have a high fold-change: FDR< 0.05 and |log2FC|> 1.5. In this work all genes with FDR< 0.05 and |log2FC|>

0.26 have been taken into account (all red genes and most blue genes) which amounts to 5817 genes of which 2664

genes were upregulated and 3153 genes were downregulated.

https://doi.org/10.1371/journal.pone.0307227.g001
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Table 1. Top 25 differentially upregulated and top 25 downregulated genes in glaucomatous Tenon’s ocular fibroblasts when compared to normal Tenon’s ocular

fibroblasts as ranked by false discovery rate (FDR).

Gene symbol Gene name log2FC FDR

L1CAM (NCAM-L1) L1 cell adhesion molecule -6.69 4.38e-09

ILDR2 (C1orf32) immunoglobulin like domain containing receptor 2 -7.32 1.99e-06

TPD52 tumor protein D52 -6.87 7.42e-06

MECOM (MDS1 EVI1) MDS1 and EVI1 complex locus -5.74 7.42e-06

PLS1 plastin 1 -4.63 7.42e-06

RASGRF1 (GRF1) Ras protein specific guanine nucleotide releasing factor 1 -6.71 7.42e-06

MYBL2 MYB proto-oncogene like 2 -5.18 7.42e-06

DLX1 distal-less homeobox 1 -5.23 7.42e-06

CDH3 cadherin 3 -6.47 7.42e-06

MYRF (C11orf9) myelin regulatory factor -5.40 7.42e-06

CDCA7 cell division cycle associated 7 -5.33 8.93e-06

CADM4 (IGSF4C) cell adhesion molecule 4 -3.08 8.93e-06

NETO2 neuropilin and tolloid like 2 -5.62 9.39e-06

IGSF3 immunoglobulin superfamily member 3 -5.91 1.16e-05

GINS4 GINS complex subunit 4 -4.16 1.16e-05

XRCC2 X-ray repair cross complementing 2 -3.95 1.32e-05

AK3P2 adenylate kinase 3 pseudogene 2 -7.03 1.32e-05

TLCD4 (TMEM56) TLC domain containing 4 -5.50 1.32e-05

AMH anti-Mullerian hormone -4.07 1.46e-05

TTLL7 tubulin tyrosine ligase like 7 -2.55 1.47e-05

ENSG00000272405 ENSG00000272405 -5.31 1.47e-05

FGF13 (LINC00889) fibroblast growth factor 13 -5.38 1.47e-05

SIM2 (SIM) SIM bHLH transcription factor 2 -6.84 1.47e-05

MCM8 (C20orf154) minichromos. maint.8 homologous recomb. repair factor -3.55 1.47e-05

OCLN occludin -5.91 1.47e-05

HLA-H major histocompatibility complex, class I, H (pseudogene) 2.34 1.89e-05

SVIL-AS1 SVIL antisense RNA 1 1.13 2.52e-05

HAPLN1 (CRTL1) hyaluronan and proteoglycan link protein 1 6.02 2.52e-05

GALNT3 polypeptide N-acetylgalactosaminyltransferase 3 2.96 5.46e-05

FRG1BP (C20orf80) FSHD region gene 1 family member B, pseudogene 1.58 9.25e-05

AVPI1 arginine vasopressin induced 1 1.41 1.14e-04

ADH5 (FDH) alcohol dehydrogenase 5 (class III), chi polypeptide 1.35 1.46e-04

CD109 CD109 molecule 1.91 1.55e-04

KCNQ5 potassium voltage-gated channel subfamily Q member 5 1.76 1.87e-04

MGST3 microsomal glutathione S-transferase 3 1.18 1.92e-04

CAPZB capping actin protein of muscle Z-line subunit beta 1.16 1.92e-04

TMBIM1 transmembrane BAX inhibitor motif containing 1 1.27 1.97e-04

GBA (GLUC) glucosylceramidase beta 0.69 2.04e-04

LMO7 (FBXO20) LIM domain 7 1.96 2.07e-04

ANXA5 (ENX2 ANX5) annexin A5 1.44 2.13e-04

CTSB cathepsin B 1.54 2.15e-04

BMS1P23 BMS1 pseudogene 23 2.81 2.28e-04

NMRK1 (C9orf95) nicotinamide riboside kinase 1 2.10 2.36e-04

EXPH5 exophilin 5 1.48 2.36e-04

SLC4A4 (SLC4A5) solute carrier family 4 member 4 2.60 2.41e-04

NUDT22 nudix hydrolase 22 1.01 2.44e-04

(Continued)
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FDR and Fig 2 shows a heatmap of the normalised expression of top 50 upregulated and 50

downregulated genes with the lowest FDR. S1 Fig shows the 2 highest dimensions of a princi-

pal component analysis (PCA) which demonstrates good clustering of glaucomatous samples

while normal samples show more spread, especially samples C3 and C5. A complete table con-

taining all 11,227 genes that were expressed can be found in S1 Table.

Functional enrichment and pathway analysis

Using functional enrichment tool Enrichr, overexpression analysis was performed on the list

of 5817 differentially expressed genes to identify significantly altered pathways in pathway

databases KEGG, WikiPathways, Reactome, MSigDB Hallmark genesets and enriched molecu-

lar functions (MF) and biological processes (BP) in Gene Ontology (GO). Enrichment terms

were assumed to be significantly changed between glaucomatous and normal TFs if the false

discovery rate FDR<0.01. This enrichment analysis yielded a total of 787 enriched pathways

and GO terms containing the majority of DEGs. These enrichment results were clustered into

176 clusters of which 89 clusters containing only one term. Those clusters containing more

than one term have been visualised in Fig 3. The largest cluster contained 93 terms all related

to “cell cycle” pointing to a significant overlap and redundancy in terms. A list of the top 50

enrichment results (as ranked by FDR) can be found in Table 2. A full list of clusters, terms

and genes per term can be found in S2 Table.

Glaucomatous Tenon’s ocular fibroblasts show signs of fibroblast to

myofibroblast transdifferentiation

Enrichment analysis showed significant enrichment of several fibrosis and EMT related

enrichment terms such as MSigDB hallmark gene set “Epithelial Mesenchymal Transition”

(FDR = 4e-15), “Positive Regulation Of Epithelial To Mesenchymal Transition”

(GO:0010718). Furthermore “Epithelial to mesenchymal transition in colorectal cancer”

(WP4239, p = 0.06) has a gene overlap of 56/160 and the annotated pathway shows several key

genes involved in the processes of fibrosis as shown in Fig 4. Some key upregulated genes in

this pathway are TGF-β1 and its receptor TGFBR2, transcription factors TWIST1, TWIST2,

ZEB1, ZEB2 and transcriptional repressors SNAI1, SNAI2. Furthermore, effector genes FN1

and several collagens were upregulated which is in keeping with a profibrotic status. Not

shown in Fig 4 is key fibrotic marker ACTA2 which was also upregulated (log2FC = 2.9).

Increased synthesis and remodelling of the extracellular matrix in

glaucomatous Tenon’s ocular fibroblasts

The enrichment analysis resulted in several terms associated with synthesis and remodelling of

the extracellular matrix such as “Crosslinking Of Collagen Fibrils R-HSA-2243919” and

Table 1. (Continued)

Gene symbol Gene name log2FC FDR

FUOM (C10orf125) fucose mutarotase 2.01 2.55e-04

TOM1 target of myb1 membrane trafficking protein 0.69 2.84e-04

NPC2 NPC intracellular cholesterol transporter 2 1.00 2.90e-04

IVD isovaleryl-CoA dehydrogenase 0.69 2.97e-04

For each gene the current and previously used symbols, gene name, log2FC (binary logarithm of fold change), p-value and adjusted p-value in the form of false discovery

rate (FDR) are shown.

https://doi.org/10.1371/journal.pone.0307227.t001
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Fig 2. Heatmap showing the expression of 50 most upregulated and 50 most downregulated differentially expressed genes when ranked by lowest

FDR (false discovery rate) in glaucomatous Tenon’s ocular fibroblasts when compared to normal Tenon’s ocular fibroblasts. The expression pattern

of each gene is shown in log2cpm has been normalised to enable comparison between genes. Hierarchical clustering of genes has been applied to group

genes by normalised gene expression pattern.

https://doi.org/10.1371/journal.pone.0307227.g002
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“Regulation Of Extracellular Matrix Organization (GO:1903053)”, see S2 Fig. The expression

of collagen species COL1A1, COL6, COL8, COL12 and possibly COL5A1 (FDR = 0.053) was

upregulated in glaucomatous TF cells when compared to normal TF cells. Expression of lami-

nin subunits LAMA4, LAMC1, LAMC2 was also upregulated. Furthermore, ECM components

including VCAN (versican), FN1 (fibronectin), FBN1 (fibrillin-1), VTN (vitronectin) were

upregulated in glaucomatous TF cells. ELN (elastin) was not differentially expressed. Latent

transforming growth factor binding proteins LTBP1, LTBP2, LTBP3 were all strongly upregu-

lated in glaucomatous TF cells and so was THBS1 (thrombospondin). With respect to collagen

synthesis, ECM enzymes including LOX, LOXL1, LOXL3, LOXL4, PXDN, P4HA1, P4HA2,

PLOD1, PLOD3 were all upregulated. Considering the matrix metallopeptidase family,

ADAM12, ADAM10, ADAM23 were upregulated and so were MMP2 (log2FC = 2.4), MMP14

and MMP17 while MMP15 and MMP24 were downregulated. Conversely, metallopeptidase

Fig 3. Clustered enrichment results showing key biological processes that are different between glaucomatous and normal Tenon’s ocular fibroblasts.

The enrichment terms were obtained using an over-representation analysis (ORA) of a gene list of differentially expressed genes with false discovery rate

FDR< 0.05 when comparing glaucomatous to normal Tenon’s capsule fibroblasts. Each node corresponds to an enrichment term in which the node intensity

represents the FDR in a range 0.00 (darkest) to 0.01 (lightest) while the node size indicates the number of genes associated with a certain enrichment term.

Blue lines connecting these nodes represent gene list overlap between enrichment terms above a threshold of 0.27. Clustered enrichment terms have been

encircled and annotated.

https://doi.org/10.1371/journal.pone.0307227.g003

PLOS ONE RNA-sequencing of ocular fibroblasts from glaucomatous and normal eyes

PLOS ONE | https://doi.org/10.1371/journal.pone.0307227 July 11, 2024 8 / 30

https://doi.org/10.1371/journal.pone.0307227.g003
https://doi.org/10.1371/journal.pone.0307227


Table 2. Top 50 enriched pathways.

term FDR

Cell Cycle (REAC:R-HSA-1640170) 9.18e-63

E2F Targets (MSIG:26) 4.92e-62

RNA Binding (GOMF:0003723) 5.15e-62

Cell Cycle, Mitotic (REAC:R-HSA-69278) 1.10e-52

Metabolism Of RNA (REAC:R-HSA-8953854) 1.87e-46

G2-M Checkpoint (MSIG:08) 1.48e-43

Processing Of Capped Intron-Containing Pre-mRNA (REAC:R-HSA-72203) 1.02e-34

M Phase (REAC:R-HSA-68886) 6.27e-33

Cell Cycle Checkpoints (REAC:R-HSA-69620) 1.26e-31

Myc Targets V1 (MSIG:27) 1.00e-29

DNA Metabolic Process (GOBP:0006259) 3.06e-29

Mitotic Prometaphase (REAC:R-HSA-68877) 3.51e-29

mRNA Splicing—Major Pathway (REAC:R-HSA-72163) 1.51e-26

Mitotic Metaphase And Anaphase (REAC:R-HSA-2555396) 3.02e-26

mRNA Splicing (REAC:R-HSA-72172) 5.12e-26

Mitotic Anaphase (REAC:R-HSA-68882) 5.52e-26

Resolution Of Sister Chromatid Cohesion (REAC:R-HSA-2500257) 1.63e-24

DNA Repair (REAC:R-HSA-73894) 1.55e-23

Gene Expression (Transcription) (REAC:R-HSA-74160) 2.00e-23

DNA Repair (GOBP:0006281) 2.01e-23

Separation Of Sister Chromatids (REAC:R-HSA-2467813) 2.15e-23

Metabolism Of Proteins (REAC:R-HSA-392499) 1.66e-22

Retinoblastoma gene in cancer (WIPA:WP2446) 1.87e-22

DNA Damage Response (GOBP:0006974) 5.22e-22

mRNA Splicing, Via Spliceosome (GOBP:0000398) 5.32e-21

Mitotic Spindle Checkpoint (REAC:R-HSA-69618) 6.65e-21

mRNA Processing (GOBP:0006397) 2.84e-20

Cellular Responses To Stress (REAC:R-HSA-2262752) 4.36e-20

Signaling By Rho GTPases, Miro GTPases And RHOBTB3 (REAC:R-HSA-9716542) 4.39e-20

Unattached Kinetochores Signal Amplification Via A MAD2.. (REAC:R-HSA-141444) 5.06e-20

RHO GTPases Activate Formins (REAC:R-HSA-5663220) 1.05e-19

mRNA Processing (WIPA:WP411) 1.51e-19

Cellular Responses To Stimuli (REAC:R-HSA-8953897) 3.64e-19

EML4 And NUDC In Mitotic Spindle Formation (REAC:R-HSA-9648025) 4.19e-19

Post-translational Protein Modification (REAC:R-HSA-597592) 4.19e-19

S Phase (REAC:R-HSA-69242) 5.63e-19

Signaling By Rho GTPases (REAC:R-HSA-194315) 7.58e-19

DNA Repair Pathways Full Network WP4946 (WIPA:WP4946) 3.72e-18

Transcriptional Regulation By TP53 (REAC:R-HSA-3700989) 4.69e-18

RNA Polymerase II Transcription (REAC:R-HSA-73857) 1.44e-17

RNA Splicing, Via Transesterification Reactions With Bulged Adenosine As.. (GOBP:0000377) 1.82e-17

Ribosome Biogenesis (GOBP:0042254) 7.31e-16

Mitotic G1 Phase And G1/S Transition (REAC:R-HSA-453279) 1.80e-15

Mitotic Spindle (MSIG:03) 3.28e-15

DNA IR-damage and cellular response via ATR (WIPA:WP4016) 3.60e-15

Epithelial Mesenchymal Transition (MSIG:29) 4.32e-15

G1/S Transition (REAC:R-HSA-69206) 5.51e-15

(Continued)
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inhibitors TIMP1, TIMP2, TIMP3 were also strongly upregulated, for instance TIMP1 showed

log2FC = 3.1 corresponding to an 8-fold increase with respect to normal TF cells.

Autophagy is upregulated in glaucomatous Tenon’s ocular fibroblasts

Enrichment analysis showed significant changes in autophagy in glaucomatous TFs compared

to normal TFs as indicated by enriched Reactome pathways “Autophagy” (R-HSA-9612973,

FDR = 1.8e-3), “Selective Autophagy” (R-HSA-9663891, FDR = 8.8e-3) and “Macroauto-

phagy” (R-HSA-1632852) and GO biological processes “Macroautophagy” (GO:0016236) and

“Regulation Of Macroautophagy” (GO:0016241). Some key genes involved in autophagy are

shown in a heatmap in S3 Fig and in the annotated KEGG pathway hsa04140 in Fig 5.

Several genes related to LC3 formation were upregulated such as MAP1LC3A, MAP1LC3B

and GABARAPL1. Of the ATG (autophagy related) gene family, ATG2B, ATG10, ATG12,

ATG14 were upregulated and ATG3, ATG5, ATG7 were moderately downregulated. Further-

more, LAMP1 and SQSTM1 (p62) were upregulated. While autophagy did appear to be upre-

gulated, this was not clear for mitophagy. Several mitophagy-related enrichment results were

identified such as “PINK1-PRKN Mediated Mitophagy” (R-HSA-5205685) but further inspec-

tion demonstrated that there was no change in expression of PINK1 and there was hardly any

expression of PRKN and in fact this gene was filtered out due to low count numbers.

Mitochondrial fission is upregulated in glaucomatous Tenon’s ocular

fibroblasts

Several biological processes involved in mitochondrial fission and fusion were significantly

altered such as Mitochondrion Morphogenesis (GO:0070584) and Mitochondrion Organiza-

tion (GO:0007005). The differentially expressed genes involved in these biological processes

and other related processes are shown in Fig 6. Several key genes associated with mitochon-

drial fission were upregulated such as FIS1, MFF and several genes involved in mitochondrial

fusion were downregulated such as MFN1 and OPA1 which suggests a functional enhance-

ment of mitochondrial fission.

Oxidative stress is increased in glaucomatous Tenon’s ocular fibroblasts

Oxidative stress was identified in our enrichment results, for instance “Cellular Response To

Oxidative Stress (GO:0034599)” and MSigDB hallmark set “Reactive Oxygen Species Path-

way”. The genes associated with some key enrichment terms are presented as a heatmap in Fig

7. Several antioxidant enzymes were upregulated including GLRX (glutaredoxin), SRXN1 (sul-

firedoxin), TXNRD1 and glutathione peroxidases GPX8, GPX7, GPX4 while GPX3 was down-

regulated in glaucomatous TF cells. Peroxiredoxins PRDX1, PRDX4, PRDX5, PRDX6 were

upregulated in glaucomatous TF cells while PRDX3 was downregulated. One component of

Table 2. (Continued)

term FDR

Mitotic G2-G2/M Phases (REAC:R-HSA-453274) 9.16e-15

Spliceosome (KEGG:hsa03040) 1.55e-14

G2/M Transition (REAC:R-HSA-69275) 3.63e-14

The top 50 enriched pathways from KEGG, Reactome (REAC), WikiPathways (WIPA), MSigDB Hallmark genesets

(MSIG) and GO biological processes (GOBP) and molecular functions (GOMF) ranked by false discovery rate (FDR)

in glaucomatous Tenon’s ocular fibroblasts.

https://doi.org/10.1371/journal.pone.0307227.t002
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glutathione S-transferase, namely GSTP1, was upregulated. Key regulator of antioxidant

enzymes NFE2L2, also known as NRF2, was upregulated by a factor of two (log2FC = 0.94,

FDR = 3e-3) in glaucomatous TF cells. There was no difference in expression of SOD (super-

oxide dismutase) enzymes between glaucomatous and normal TF cells. Overall, the antioxi-

dant system and especially the glutathione subsystem was clearly upregulated in glaucomatous

TF cells when compared to normal TF cells.

Glaucomatous Tenon’s ocular fibroblasts show cell cycle arrest and senescence

Enrichment cluster “cell cycle” was the largest cluster in our enrichment results and contained

93 enrichment terms all related to the cell cycle such as KEGG “cell cycle” hsa04110

Fig 4. Pathway analysis showing myofibroblastic transition in glaucomatous Tenon’s ocular fibroblasts.

Expression of genes in WikiPathway “Epithelial to mesenchymal transition in colorectal cancer” (WP4239).

Differentially expressed genes in WikiPathway WP4239 have been annotated using package PathVisio. Red

corresponds to upregulation in glaucomatous TF cells when compared to normal TF cells while blue corresponds to

downregulation. Grey coloured genes are expressed but not differentially so. White coloured genes were not found to

be expressed in our dataset or were filtered out due to low number of reads.

https://doi.org/10.1371/journal.pone.0307227.g004
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(FDR = 4e-14) and “Cell Cycle R-HSA-1640170” in Reactome, see S2 Table, indicating that

there are differences in proliferation and cell cycle between glaucomatous and normal TFs. To

illustrate key differences in cell cycle gene expression, KEGG diagram hsa04110 was annotated

using Pathview (see Fig 8), demonstrating clear differences in gene expression between glauco-

matous and normal TFs. Further inspection of Cyclins and Cdk inhibitor genes in glaucoma-

tous versus normal TFs showed that CCND1 was upregulated and CCNB2, CCNE2, CCNB1,

CCNA2 were all highly downregulated (log2FC around -3.5) in glaucomatous TFs, indicating

that these cells were most likely in the G1 phase. Furthermore, CCNG1 was upregulated and

Cdk inhibitor CDKN1A (p21, Cip1) was upregulated while all other Cdk inhibitors were either

downregulated or not differentially expressed. Cyclin expression is in part regulated by tran-

scription regulators of the E2F family. Within this family, E2F1, E2F3, E2F4 were all downre-

gulated and so were their inhibitors RB1, RBL1 and RBL2. In addition to cell cycle arrest,

glaucomatous TFs also showed signs of a senescence-associated secretory phenotype including

upregulation of TGF-β1 (TGFB1, log2FC = 1.5, FDR = 0.006), IL6 (log2FC = 1.5,

FDR = 0.045), IGFBP2, IGFBP3, IGFBP4, IGFBP6. SERPINE1 (PAI-1) was also upregulated

but with FDR = 0.06. All VEGF species VEGFA, VEGFB, VEGFC were significantly

Fig 5. Pathway analysis showing autophagy in glaucomatous Tenon’s ocular fibroblasts when compared to normal

fibroblasts. The autophagy transcriptome in glaucomatous Tenon’s ocular fibroblasts by annotation of genes in KEGG

pathway hsa04140 named “autophagy—animal” using R package Pathview. To enhance visibility, gene expression was

normalised to a range of [–1,1] in which orange indicates upregulation and cyan indicates downregulation. Grey coloured

genes are expressed but not differentially so. White coloured genes were not found to be expressed at sufficient levels in our

dataset.

https://doi.org/10.1371/journal.pone.0307227.g005
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upregulated. In summary, the glaucomatous TF cells show cell cycle arrest and a senescence-

associated secretory phenotype. With respect to the TGF-β family it is interesting to note that

while TGF-β1 (TGFB1) and TGF-β3 (TGFB3) were both upregulated, expression of TGF-β2

(TGFB2) was strongly downregulated (log2FC = -3.5, FDR = 2e-5) in glaucomatous TF cells

when compared to normal cells.

Upregulation of the unfolded protein response in glaucomatous Tenon’s

ocular fibroblasts

The unfolded protein response (UPR) appeared in several enrichment terms within cluster “UPR;

cellular stress; senescence” such as “XBP1(S) Activates Chaperone Genes” (R-HSA-381038),

“Unfolded Protein Response (UPR)” (R-HSA-381119), “ERAD Pathway” (GO:0036503) and

“ATF4 Activates Genes In Response To Endoplasmic Reticulum Stress R-HSA-380994”. Further

inspection and pathway analysis showed increased expression of DDIT3 (CHOP), see Fig 9 and

the gene-enrichment heatmap in S4 Fig. There are three UPR branches that may be activated and

that start by dissociation of HSPA5 (BiP) from EIF2AK3 (PERK), ATF6 or ERN1 (IRE1α). HSPA5

itself was not differentially expressed. EIF2AK3 (PERK) was also not differentially expressed but a

paralog of this gene, EIF2AK4, was upregulated possibly indicating activation of this UPR branch.

ATF6B was moderately upregulated. ERN1 (IRE1α) was not differentially expressed but its associ-

ated gene XBP1 was upregulated albeit with an FDR = 0.06. In summary the UPR is upregulated

or at least altered in glaucomatous TFs when compared to normal TF cells.

Glaucomatous Tenon’s ocular fibroblasts show altered apoptotic pathways

Enrichment analysis resulted in two clusters involved in apoptosis, “regulation of apoptosis”

and “intrinsic apoptotic signalling pathway” and several unclustered terms. The intrinsic

Fig 6. Genes and enrichment terms associated with mitochondrial fission and fusion in glaucomatous Tenon’s ocular fibroblasts when compared to

normal Tenon’s ocular fibroblasts. This heatmap shows genes with a false discovery rate FDR< 0.05 that are associated with key enrichment terms related to

mitochondrial fission and fusion. Heatmap colours correspond to fold change (in log2FC) which has been limited to a range of [–4,4] to improve visibility.

https://doi.org/10.1371/journal.pone.0307227.g006
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apoptotic pathway showed both pro-apoptotic and anti-apoptotic changes in glaucomatous TF

cells when compared to normal cells, see the annotated KEGG pathway hsa04210 in Fig 10.

BH3-only sensitizers PMAIP1 (also known as NOXA, log2FC = -2.7, FDR = 2e-4) and BMF

were downregulated while BAD was upregulated. Pro-survival genes BCL2 (log2FC = -0.94)

and MCL1 were downregulated while expression of BCL2L1 (BCL-XL) was unchanged and

expression of pro-survival gene BCL2L2 (also known as BCL-W) was upregulated. BH3-only

activators BCL2L11 (BIM) and BID were downregulated while BBC3 (PUMA) was upregu-

lated. Effector BAX was upregulated while BAK1 was downregulated. As mentioned before,

DDIT3 (CHOP) was upregulated in glaucomatous tissue, linking the UPR to apoptosis. The

extrinsic apoptotic pathway seemed upregulated in glaucomatous TF cells and showed upregu-

lation of several genes coding for death receptors such as FAS and TNFRSF1A (TNF-R1).

Transcription factor TP53 (P53) was downregulated by a factor 4 (log2FC = -2.1) and so was

the expression of some of its transcriptional targets such as PMAIP1 but on the other hand

expression of other TP53-regulated genes BBC3 (PUMA), BAX and FAS was upregulated. Exe-

cutioner caspases CASP3 and CASP7 were downregulated while expression of Caspase inhibi-

tor XIAP was unchanged.

Changes in inflammation in glaucomatous Tenon’s fibroblasts

Several enrichment results pointed to differences in inflammation between GTF and NTF cells

such as Reactome pathways “MyD88-independent TLR4 Cascade” (R-HSA-166166), “TRAF6

Fig 7. Genes and enrichment terms associated with oxidative stress. Heatmap showing genes with false discovery rate FDR< 0.05 that are associated with

key enrichment terms related to oxidative stress and the antioxidant system. Heatmap colours correspond to fold change (in log2FC) between glaucomatous

and normal Tenon’s ocular fibroblasts which has been limited to a range of [–4,4] to improve visibility.

https://doi.org/10.1371/journal.pone.0307227.g007
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Mediated Induction Of NFkB And MAP Kinases Upon TLR7/8 Or 9 Activation” (R-HSA-

975138),”Interleukin-17 Signaling” (R-HSA-448424), “Interleukin-6 Signaling” (R-HSA-

1059683) and “Activation Of NF-kappaB In B Cells” (R-HSA-1169091). Further inspection on

gene level identified upregulation of cytokine IL6 (log2FC = 1.5, FDR = 0.04) and downregula-

tion of IL1B (IL-1β) (log2FC = -4.5, FDR = 0.001). Of the cytokine receptors, IL31RA was

strongly downregulated (log2FC = -4.1), IL17RA was upregulated and so was IL6 receptor

associated gene IL6ST (log2FC = 1.4). Toll-like receptor 4 (TLR4) was upregulated

(log2FC = 2.1, FDR = 0.03). Several members of the TNF receptor superfamily were upregu-

lated, notably TNFRSF1A and TNFRSF1B. As noted earlier, expression of TGF-β1 was upre-

gulated (TGFB1, log2FC = 1.5, FDR = 0.006) while expression of TGF-β2 was downregulated

(log2FC = -3.5, FDR = 2e-5) in glaucomatous TF cells when compared to normal cells.

Discussion

In this study we performed a genome-wide hypothesis-independent RNA sequencing analysis

to compare Tenon’s ocular fibroblasts from glaucoma (POAG) patients to those originating

from non-glaucomatous patients. The large number of differentially expressed genes indicates

that Tenon’s ocular fibroblasts from glaucomatous patients have undergone dramatic changes

when compared to those from non-glaucomatous patients. Enrichment analysis revealed fibro-

blast to myofibroblast transdifferentiation and changes in mitochondrial organisation,

Fig 8. Pathway analysis showing cell cycle alterations in glaucomatous Tenon’s ocular fibroblasts. Alterations in

cell cycle have been shown by annotation of genes in KEGG pathway hsa04110 named “cell cycle” using R package

Pathview. To enhance visibility, gene expression has been normalised to a range of [–1,1] in which orange indicates

upregulation and cyan indicates downregulation. Grey coloured genes are expressed but not differentially so. White

coloured genes were not found to be expressed at sufficient levels in our dataset.

https://doi.org/10.1371/journal.pone.0307227.g008
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autophagy, oxidative stress, ECM remodelling, inflammatory state, cell cycle arrest and senes-

cence, unfolded protein response and apoptosis. These themes will be discussed in more detail

below.

When comparing TF cells originating from glaucoma patients with those from normal

patients, we found that glaucomatous TF cells showed upregulation of genes associated with a

myofibroblast cell type such as ACTA2 (α-SMA), ZEB1, ZEB2, SNAI1 (SNAIL) and SNAI2

(SLUG) suggesting fibroblast to myofibroblast transdifferentiation. Myofibroblasts are con-

tractile, ECM-producing cells that normally appear transiently during normal wound healing

but become persistent in pathological fibrotic conditions such as systemic sclerosis [31], idio-

pathic pulmonary fibrosis [32] and liver fibrosis [33]. Myofibroblasts may originate from epi-

thelial cells (via a process called EMT), endothelial cells (via EndMT), regular fibroblasts and

other cells [34, 35]. Myofibroblasts and corresponding biological processes such as EMT have

been reported to play a role in the context of glaucoma, for instance in retinal pigment epithe-

lial cells [36], lamina cribrosa cells [37] and trabecular meshwork cells [38, 39]. In keeping

with our results, Tenon’s ocular fibroblasts from glaucomatous patients were reported to show

signs of a myofibroblast phenotype by determining differential expression of a predefined

panel of 10 genes [16].

One mechanism by which fibroblasts may transdifferentiate into myofibroblasts is via expo-

sure to POAG-related extracellular signal molecules such as TGF-β2 which is upregulated in

the aqueous humour (AH) of POAG patients [8, 40]. It is plausible that AH containing

POAG-associated ROS and cytokines can reach Tenon’s capsule and therefore TFs by drainage

Fig 9. Pathway analysis showing alterations in the unfolded protein response and ER stress. Changes in the

unfolded protein response and ER stress in Tenon’s ocular fibroblasts have been shown by annotation of genes in

KEGG pathway hsa04141 “protein processing in endoplasmic reticulum” which also contains the Unfolded Protein

Response (UPR). Annotation has been achieved using R package Pathview. To enhance visibility, gene expression has

been normalised to a range of [–1,1] in which orange indicates upregulation and cyan indicates downregulation. Grey

coloured genes are expressed but not differentially so. White coloured genes were not found to be expressed at

sufficient levels in our dataset.

https://doi.org/10.1371/journal.pone.0307227.g009
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via the subconjunctival space and/or lymphatic vessels of the conjunctiva [41]. Also, TGF-β1

can cause fibroblast to myofibroblast transdifferentiation [42, 43] and may play an autocrine

role in our experiment via a positive feedback mechanism because TGF-β1 (TGFB1) was upre-

gulated in glaucomatous TF cells when compared to normal cells in our results. Another

mechanism by which fibroblast to myofibroblast transdifferentiation may occur is in response

to altered mechanical forces exerted onto the cell [44, 45]. It is not clear if such a mechanism

has played a role in GTFs when compared to NTFs. The use of preservative benzalkonium

chloride which is often present in topical glaucoma drugs has been demonstrated to cause TF

fibroblast to myofibroblast transdifferentiation at lower concentrations than used in actual

eyedrops [46] suggesting this could be a factor contributing to the fibroblast to myofibroblast

transdifferentiation we observed in our results. Furthermore, exposure to reactive oxygen spe-

cies (ROS) may also promote fibroblast to myofibroblast transdifferentiation [47, 48].

Overall, the increased expression of myofibroblast markers in glaucomatous TF tissue may

be explained by exposure to POAG-related cytokines, growth factors and reactive oxygen spe-

cies (ROS) in combination with ingredients of glaucoma drugs. Several aspects of fibrosis and

myofibroblasts such as oxidative stress, autophagy, mitochondrial changes, extracellular

matrix remodelling, inflammation, apoptosis and senescence will be discussed in more detail.

Our results showed increased expression of several ECM components such as collagen spe-

cies, FN1, FBN1, FBN2 and others together with upregulation of ECM-modifying enzymes

such as lysyl oxidases, prolyl hydroxylases, peroxidasin in glaucomatous TF cells when com-

pared to normal TF cells. Upregulation of collagens is a key feature of many fibrotic conditions

and especially the expression of COL1, COL3 and COL5 is increased in fibrosis [45]. Similar

to our results, upregulation of MMP2 and MMP14 together with upregulation of TIMP1 has

Fig 10. Pathway analysis showing apoptosis related gene expression in glaucomatous Tenon’s ocular fibroblasts

compared to normal Tenon’s ocular fibroblasts. The pathway analysis is performed by annotation of genes in KEGG

pathway hsa04210 “apoptosis” using R package Pathview. To enhance visibility, gene expression has been normalised

to a range of [–1,1] in which orange indicates upregulation and cyan corresponds to downregulation. Grey coloured

genes are expressed but not differentially so. White coloured genes were not found to be expressed at sufficient levels in

our dataset.

https://doi.org/10.1371/journal.pone.0307227.g010
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been shown in liver fibrosis [49]. Upregulation of TIMP2 and other TIMP species has been

found in several forms of glaucoma as well [50–52] and will promote ECM accumulation. In

keeping with our results, metallopeptidase ADAM12 has also been reported to be upregulated

in glaucomatous lamina cibrosa cells [53] and is also associated with liver-fibrosis [54]. The

expression of ADAM12 is regulated by TGF-β1 [55] and expression was shown to be upregu-

lated in vitro in human trabecular meshwork cells after treatment with TGF-β1 [56]. Several

lysyl oxidases were upregulated in our results which has also been shown in other myofibro-

blasts [34]. Upregulation of LOXL1 was also observed in vitro in Tenon’s ocular fibroblasts

treated with TGF-β1 [57]. Since TGF-β1 was also upregulated in our data, LOXL1 expression

may have been increased as a result of autocrine signalling via TGF-β1. Overall, glaucomatous

TF cells show higher expression of structural ECM components while restraining the activity

of matrix metalloproteases by increased expression of TIMPs which is expected to result in

increased deposition of extracellular matrix proteins which highly correlates with fibrosis and

fibroblast to myofibroblast transdifferentiation [45].

We observed differences in several autophagy related genes when comparing glaucomatous

to normal TF cells. Several LC3 components of the MAP1LC3 family were upregulated but on

the other hand ATG5 and ATG7 were moderately downregulated with a log2FC around -0.5.

To assess differences in autophagy it would also have been interesting to determine the phos-

phorylation state of certain autophagy-related proteins such as LC3 which was beyond the

scope of this study. Autophagy has been reported to be associated with several fibrotic condi-

tions and can either promote or reduce fibrosis depending on cell type and cell state [58–60].

Furthermore, autophagy also plays a role in glaucoma. In POAG, autophagy in the trabecular

meshwork has been shown to be dysregulated via the mTOR pathway [61] and autophagy may

contribute to TM cell death [62] while autophagy deficiency protects against increased IOP

and neurodegeneration in a mouse model [63, 64]. In pseudoexfoliation glaucoma dysfunc-

tional autophagy may also play a causative role [65]. Overall, it appears that the observed dif-

ferences in autophagy between glaucomatous and normal TF cells may be part of a fibrotic

response.

Our results showed increased mitochondrial fission in glaucomatous TFs when compared

to normal TFs. In several cell types mitochondrial fission has been reported to be associated

with fibrosis. In corneal myofibroblast differentiation, mitochondrial fission was observed and

in fact proved to be necessary to transdifferentiate corneal fibroblasts into myofibroblasts [66].

Mitochondrial fission and fragmentation were also reported in interstitial fibroblasts originat-

ing from fibrotic kidneys [67]. In myofibroblasts obtained from fibrotic lung tissue, mitochon-

drial fission was also found to be upregulated, presumably to meet higher energy demands

[68]. With respect to glaucoma, increased mitochondrial fission has been observed after eleva-

tion of intraocular pressure in a mouse model [69]. Mitochondrial dysfunction and mitochon-

drial changes are strongly associated with glaucoma [70, 71] and with fibrotic conditions in

general [72]. Mitochondrial changes have also been associated with exposure to glaucoma

drug preservatives notably benzalkonium chloride (BAC). BAC has been reported to be caus-

ing mitochondrial dysfunction resulting in reduced ATP synthesis, production of reactive oxy-

gen species [9, 10, 73] and mitochondrial fragmentation, although it should be noted that the

latter observation was demonstrated in yeast [74].

The observed mitochondrial fission in our results is probably part of a fibrotic state which

itself may have been caused by a combination of POAG pathology and glaucoma drug ingredi-

ents. The fact that mitochondrial changes have also been observed in animal models without

BAC [69] suggests that at least POAG itself plays a role here.

There was upregulation of several key antioxidant enzymes and their primary regulator

NFE2L2 (NRF2) in glaucomatous TF cells when compared to normal cells indicating that
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glaucomatous TF cells may have been subjected to increased oxidative stress levels compared

to normal cells. In previous work our group demonstrated increased oxidative stress levels in

glaucomatous Tenon’s ocular fibroblasts using the CellROX green assay [19]. Oxidative stress

has also been reported to be associated with several fibrotic conditions such as pulmonary

fibrosis [75]. One possible source of oxidative stress is BAC which has been shown to cause an

increase in reactive oxygen species (ROS) and subsequent stress-induced premature senes-

cence [10, 76] but oxidative stress is also a key feature of POAG and other forms of glaucoma

[77, 78] and can be induced in a BAC-free mouse model using microbead occlusion [79]. Sev-

eral transcriptional targets of NFE2L2 were upregulated in our results such as GPX4, PRDX6

and TXNRD1 [80] suggesting that NFE2L2 has not only been expressed at a higher level but

also has a higher level of activation (i.e. phosphorylation), possibly via the PI3K/Akt pathway

as described in [79]. NFE2L2 (NRF2) has been linked to glaucoma [81] and TGF-β2 [82] and

may be a useful drug target to improve the outcome of glaucoma filtration surgery by reducing

bleb fibrosis [83]. Reactive oxygen species have been shown to liberate latent TGF-β1 from the

Large Latent Complex (consisting of TGF-β1, LAP and LTBP) by conformational change of

LAP-beta1 [84] and possibly by other mechanisms as well [85].

When comparing glaucomatous TF cells to normal TF cells our results showed cell cycle

arrest and upregulation of Cdk inhibitor protein CDKN1A (p21). CDKN1A binds to G1-Cdk

thus inhibiting cell cycle progression at G1 [86]. It is interesting to note that CDKN1A is asso-

ciated with POAG [87] and also with certain fibrotic conditions such as idiopathic pulmonary

fibrosis [88]. Furthermore, our results showed signs of a senescence-associated secretory phe-

notype (SASP) as described in [89]. Senescence and cell cycle arrest are associated with glau-

coma [90] as demonstrated by increased senescence in the outflow facility of POAG patients

[91]. Upregulation of CDKN1A has also been linked to exposure to benzalkonium chloride, at

least in human lung epithelial cells [92]. Cell cycle arrest can be induced by TGF-β2 (TGFB2)

and is in this case associated with upregulation of CDKN2B [82] but in our results CDKN2B

was not differentially expressed. In a model of pulmonary fibrosis, upregulation of CDKN1A

and cell cycle arrest was also reported together with myofibroblast activation, telomere short-

ening and release of inflammatory cytokines pointing to a both senescent and fibrotic condi-

tion in which DNA damage causes cell cycle arrest via TP53 (p53) [93]. A similar mechanism

may explain our results as DNA damage was enriched in our dataset. Interestingly expression

of TP53 (p53) was strongly reduced in glaucomatous TFs which agrees with a study of pulmo-

nary fibroblasts in which expression of TP53 was reported to be reduced in IPF patients [94].

Cyclin expression is in part regulated by transcription regulators of the E2F family [95, 96] and

E2F1, E2F3, E2F4 were all downregulated. Apart from regulating several Cyclins, members of

the E2F family of transcription regulators are also known to regulate their own transcription

resulting in a positive feedback loop so it seems these regulators are at a stable low state in glau-

comatous TFs.

The unfolded protein response (UPR) is associated with both POAG and fibrosis and was

also found to be altered in our results. In POAG, activation of the UPR has been demonstrated

in trabecular meshwork tissue in which expression of HSPA5, GRP94, ATF-4, ERO-1α and

CHOP were all increased [97] and can be induced in trabecular meshwork cells when treated

with TGF-β1 [56]. Activation of the UPR is also strongly associated with several fibrotic condi-

tions [98, 99]. Our results show upregulation of DDIT3 (CHOP) which is associated with pro-

longed ER stress [99]. Expression of DDIT3 (CHOP) can be regulated by all three branches of

UPR namely via EIF2AK3 (PERK), ATF6 and ERN1 (IRE1α) [100]. In our case ATF6B and

it’s associated protease MBTPS1S1P (S1P) were upregulated suggesting that ATF6 may have

caused upregulation of DDIT3. Further upstream, oxidative stress can activate several MAPKs

such as JNK leading to upregulated expression of DDIT3 and induction of the UPR.
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Interestingly, increased expression of DDIT3 (CHOP) was also reported in vitro in human

lung epithial cells after treatment with BAC [92]. Overall, our results suggest that glaucoma-

tous Tenon’s ocular fibroblasts have been subjected to prolonged ER stress and activation of

the UPR which could have been caused by exposure to cytokines, growth factors or ROS asso-

ciated with POAG pathology and may be further exacerbated by exposure to glaucoma drugs

and glaucoma drugs preservatives.

Both the intrinsic and extrinsic apoptotic pathways were altered in glaucomatous TF cells

when compared to normal cells. Apoptosis in fibrotic conditions has been reported to be

altered in myofibroblasts with respect to fibroblasts in the sense that myofibroblasts are primed

for apoptosis but manage to escape this fate, for instance by upregulating pro-survival proteins

such as BCL2L1 (BCL-XL) [34]. Evasion of apoptosis by myofibroblasts has been addressed by

a class of drugs called BH3 mimetics which promote myofibroblast apoptosis thus reducing

fibrosis [101]. Changes in pro-survival gene expression were also observed in our results:

BCL2L2 (also known as BCL-W) was upregulated which may point to a similar apoptosis-

evading mechanism because BCL2L2 suppresses effector BAX. BCL2L1 (BCL-XL) on the

other hand was unchanged in our results. Apoptotic resistance is also affected by extracellular

signal molecules TGF-β1 (TGFB1) and EDN1 (endothelin, ET-1). As noted before, TGF-β1 is

upregulated in our results while expression of EDN1 was unchanged. TGF-β1 can be both pro-

apoptotic or anti-apoptotic depending on cell type and context. For myofibroblasts TGF-β1

has been reported to act as a pro-survival cytokine and can inhibit sensitiser BAD via the

FAK-AKT pathway [102, 103]. TGF-β1 also influences the extrinsic apoptotic pathway by

inhibiting FAS-FASL signalling [34]. Biomechanical signalling is yet another survival signal

affecting the myofibroblast apoptotic pathway and relaxation of the ECM can trigger apoptosis

in fibroblasts [104]. This type of signalling is mediated via integrins and especially integrin

subunits β1 (ITGB1) and αν (ITGAV), both of which were upregulated in our results. Integ-

rins can also mediate the force-dependent release of TGF-β1 from the ECM which may be

another pro-survival mechanism [34]. A Tenon’s ocular fibroblast cultured in vitro in a regular

tissue culture flask will likely not experience the same mechanical forces compared to its nor-

mal in vivo environment so it could be that apoptosis is affected by the in vitro culturing condi-

tions in our experiment. Although there is a phenomenon called biomechanical memory

lasting for several weeks [105] which may also play a role here. Apoptosis is highly associated

with the pathogenesis of glaucoma, primarily via cell death of retinal ganglion cells but also in

other ocular tissues such as the trabecular meshwork [106]. Several studies have reported

changes in apoptosis in ocular tissues due to BAC treatment [10, 92, 107, 108] indicating that

BAC treatment may also contribute to the observed changes in apoptotic genes in glaucoma-

tous Tenon’s ocular fibroblasts when compared to normal fibroblasts. One study compared

apoptosis in untreated versus treated POAG patients and demonstrated increased apoptosis in

the trabecular meshwork and iris from treated patients suggesting that the treatment itself may

increase apoptosis [109].

Overall glaucomatous TF cells show altered expression of genes associated with apoptosis

which may be due to a combination of cytokines and ROS originating from POAG itself and

topical glaucoma drug ingredients. Glaucomatous TF cells may resist apoptosis by both upre-

gulation of pro-survival genes such as BCL2L2 and by means of autocrine TGF-β1 signalling

similar to other myofibroblasts.

Chronic low-level inflammation plays a key role in glaucoma [110–112] and also in the

pathogenesis of fibrotic disorders [113, 114]. Our results demonstrated changes in inflamma-

tory state when comparing glaucomatous to normal TF cells. In keeping with our findings

expression of the pro-inflammatory cytokine IL6 (IL-6) has been shown to be increased in reti-

nal tissue, trabecular meshwork and aqueous humour of glaucoma patients when compared to
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normal controls [111] and expression of this cytokine is also increased in several fibrotic con-

ditions [115, 116]. Furthermore, increased preoperative levels of IL6 in the aqueous humour

are correlated with poor glaucoma surgery outcome [117]. IL6 upregulation may be explained

by activation of the NF-κB pathway via toll-like receptors [118]. With respect to the TLR path-

way our results showed upregulation of TLR4 which has also been shown to play a role in

fibroblast activation [119] and in glaucoma [111, 120, 121]. Another important inflammatory

pathway is the TNF pathway which can also lead to NF-κB activation [122]. Our results indi-

cated upregulation of TNF-α receptor TNFRSF1A and furthermore it has been reported that

the concentration of TNF-α in the aqueous humor of glaucoma patients is elevated [123] so it

is conceivable that this pathway was activated in glaucomatous TF cells.

Overall, we observed increased fibroblast to myofibroblast transdifferentiation in glauco-

matous TFs when compared to normal TFs. This transdifferentiation may have been induced

by POAG-associated ROS, cytokines and growth factors such as TGF-β2 originating from the

aqueous humour and may be further exacerbated by ingredients of topical glaucoma drugs

such as BAC and polyquat.

It is not clear from the results if POAG pathology itself or topical glaucoma drug ingredi-

ents are the dominant factor causing transdifferentiation in glaucomatous TFs, most likely it is

a combination of both. The resulting myofibroblast phenotype shows increased ECM synthesis

and remodelling, altered autophagy, increased mitochondrial fission, changes in the antioxi-

dant system, cell cycle arrest, inflammation, upregulated unfolded protein response and

altered apoptotic pathways. Furthermore, the myofibroblast phenotype seems to remain in its

fibrotic state via a positive feedback loop due to autocrine TGF-β1 and IL6 signalling in addi-

tion to upregulation of transcription factors such as ZEB1 and ZEB2.

Our results indicate that glaucomatous TFs are already in a fibrotic myofibroblast state

before glaucoma filtration surgery which may compromise a favourable outcome of this proce-

dure [15]. This may also add to the variability of the surgical outcome because the preoperative

Tenon’s ocular fibroblast state may likely range from fairly normal to fibrotic. This has impli-

cations for clinical practice in that surgical outcomes are likely to be impacted by the duration

of the glaucomatous state, topical medication (number, duration and preserved or unpre-

served) and epigenetic and genetic factors. Earlier surgical interventions with glaucoma filtra-

tion surgery or minimally invasive glaucoma surgery (MIGS) devices may result in improved

outcomes but further research is required in this area [124–126]. Concomitant tissue assess-

ment at the time of surgery may also predict the degree of fibrotic activation and epigenetic/

genetic risks of fibrosis to direct more personalised therapeutic interventions [127].

Several of the identified pathways and associated genes in this work could be utilised

to find suitable drug targets to reduce both preoperative and postoperative fibrosis and

indeed several genes are already being investigated to improve the outcome of glaucoma fil-

tration surgery such as the TGF-β pathway, VEGFs, PDGF, MMPs, SPARC and p53 [12,

128, 129]. Furthermore, it may also be attempted to reverse myofibroblast transdifferentia-

tion prior to surgery e.g. by metformin treatment [130, 131]. In addition, given the fact that

glaucomatous TFs are already in a profibrotic myofibroblastic state is clinically relevant to

animal studies of glaucoma filtration surgery investigating novel therapeutic approaches. In

these animal models the Tenon’s ocular fibroblasts have not been exposed to the profibrotic

environment of the glaucomatous state. This may be one explanation why promising thera-

peutic candidates from animal studies fail in clinical trials in glaucoma patients [132]. The

use of Tenon’s ocular fibroblast/bulbar conjunctiva interface biomimetic models seeded

with GTFs may provide a better model system to investigate new anti-fibrotic therapies

[133].
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Conclusions

To our knowledge this is the first study reporting a genome-wide transcriptome comparing

glaucomatous to non-glaucomatous Tenon’s ocular fibroblasts. Our results indicate that glau-

comatous Tenon’s ocular fibroblasts are transdifferentiated into myofibroblasts with associ-

ated changes in ECM remodelling, autophagy, mitochondrial morphology, antioxidant

system, cell cycle, inflammation, unfolded protein response and apoptosis. These results may

provide insight into wound-healing and fibrosis associated with glaucoma filtration surgery

and support the development of novel therapeutic interventions to improve the outcome of

glaucoma filtration surgery.

Supporting information

S1 Fig. Principal component analysis of RNA-Seq result. Two-dimensional Principal Com-

ponent Analysis (PCA) plot showing grouping of normal samples C1..C6 in blue and glauco-

matous samples C7..C12 in orange. All glaucomatous samples cluster together while the set of

normal samples shows more spread, especially samples C3 and C5, but is still well separated

from the glaucomatous set of samples.

(TIF)

S2 Fig. Extracellular matrix gene-enrichment heatmap. Heatmap showing genes

(FDR<0.05) associated with key enrichment terms related to remodelling of the extracellular

matrix. Heatmap colours correspond to fold change expressed as log2FC which has been lim-

ited to a range of [–4,4] for clarity.

(TIF)

S3 Fig. Autophagy gene-enrichment heatmap. Heatmap showing genes (FDR<0.05) associ-

ated with key enrichment terms related to autophagy. Heatmap colours correspond to fold

change ex-pressed as log2FC which has been limited to a range of [–4,4] for clarity.

(TIF)

S4 Fig. Unfolded protein response gene-enrichment heatmap. Heatmap showing genes

(FDR<0.05) associated with key enrichment terms related to the unfolded protein response.

Heatmap colours correspond to fold change ex-pressed as log2FC which has been limited to a

range of [–4,4] for clarity.

(TIF)

S1 Table. Differential expression of genes. This table contains fold-change (log2FC), false

discovery rate (FDR), p-value and counts per million mapped reads (CPM) for all genes

expressed above a threshold of 100 reads averaged over samples.

(XLSX)

S2 Table. Enrichment results. This table contains all enrichment results using a list of differ-

entially expressed genes (FDR<0.05) as input for databases WikiPathways, KEGG, Reactome,

MSigDB Hallmark genesets, Gene Ontology (GO) biological processes and molecular func-

tions. Each entry contains a metric of significance, a genelist relevant for the enrichment result

and a cluster to which the enrichment term has been assigned, if applicable.

(XLSX)

S3 Table. Donor information. Table containing donor information for the 12 Tenon’s capsule

tissue samples.

(DOCX)
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52. Schlötzer-Schrehardt U, Lommatzsch J, Küchle M, Konstas AGP, Naumann GOH. Matrix Metallopro-

teinases and Their Inhibitors in Aqueous Humor of Patients with Pseudoexfoliation Syndrome/Glau-

coma and Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2003; 44: 1117–1125. https://

doi.org/10.1167/iovs.02-0365 PMID: 12601038

53. Smyth A, Irnaten M, Powell SK, O’Brien CJ. Elevated Expression of ADAM 12 and 19 in Human Glau-

coma Lamina Cribrosa Cells. Invest Ophthalmol Vis Sci. 2021; 62: 2770. Available: https://iovs.

arvojournals.org/article.aspx?articleid=2775759

54. Schmidt-Arras D, Rose-John S. Regulation of Fibrotic Processes in the Liver by ADAM Proteases.

Cells 2019, Vol 8, Page 1226. 2019; 8: 1226. https://doi.org/10.3390/cells8101226 PMID: 31601007

55. Le Pabic H, Bonnier D, Wewer UM, Coutand A, Musso O, Baffet G, et al. ADAM12 in human liver can-

cers: TGF-β-regulated expression in stellate cells is associated with matrix remodeling. Hepatology.

2003; 37: 1056–1066. https://doi.org/10.1053/jhep.2003.50205 PMID: 12717386

56. Roodnat AW, Callaghan B, Doyle C, Henry M, Goljanek-Whysall K, Simpson DA, et al. Genome-Wide

RNA Sequencing of Human Trabecular Meshwork Cells Treated with TGF-β1: Relevance to Pseu-

doexfoliation Glaucoma. Biomolecules. 2022; 12: 1693. https://doi.org/10.3390/BIOM12111693

PMID: 36421707

57. Zenkel M, Krysta A, Pasutto F, Juenemann A, Kruse FE, Schlötzer-Schrehardt U. Regulation of Lysyl

Oxidase-like 1 (LOXL1) and Elastin-Related Genes by Pathogenic Factors Associated with Pseudoex-

foliation Syndrome. Invest Ophthalmol Vis Sci. 2011; 52: 8488–8495. https://doi.org/10.1167/iovs.11-

8361 PMID: 21948647

58. Hill C, Wang Y. Autophagy in pulmonary fibrosis: friend or foe? Genes Dis. 2022; 9: 1594–1607.

https://doi.org/10.1016/j.gendis.2021.09.008 PMID: 36119644
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