265 research outputs found

    Photoinduced optical absorption and 400-nm luminescence in low-germanium-content optical fiber preforms irradiated with ArF and KrF excimer-laser light

    Get PDF
    The optical absorption spectrum and the 400-nm photoluminescence (PL) of a 1.4-mol. % Ge photosensitive optical fiber preform subjected to high fluence of 193-nm ArF and 248-nm KrF excimer-laser irradiation are measured. The largest absorption increases occur near 200  nm in both cases, but a small net bleaching of absorption is obtained near the laser wavelength for KrF irradiations. The blue PL decreases during ArF exposure but increases with the KrF laser. In similarly excited 9-mol. % Ge fiber preforms the blue PL always decreases. A study of the PL intensity as a function of irradiating laser light intensity shows no evidence of multiple photon absorption effects

    Effective damping in the Raman cooling of trapped ions

    Full text link
    We present a method of treating the interaction of a single three-level ion with two laser beams. The idea is to apply a unitary transformation such that the exact transformed Hamiltonian has one of the three levels decoupled for all values of the detunings. When one takes into account damping, the evolution of the system is governed by a master equation usually obtained via adiabatic approximation under the assumption of far-detuned lasers. To go around the drawbacks of this technique, we use the same unitary transformation to get an effective master equation.Comment: 15 pages, 5 figures. To appear in Optics Communication

    Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation

    Full text link
    We propose a theory which deals with the structure and interactions of volume elements in liquid helium II. The approach consists of two nested models linked via parametric space. The short-wavelength part describes the interior structure of the fluid element using a non-perturbative approach based on the logarithmic wave equation; it suggests the Gaussian-like behaviour of the element's interior density and interparticle interaction potential. The long-wavelength part is the quantum many-body theory of such elements which deals with their dynamics and interactions. Our approach leads to a unified description of the phonon, maxon and roton excitations, and has noteworthy agreement with experiment: with one essential parameter to fit we reproduce at high accuracy not only the roton minimum but also the neighboring local maximum as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure

    On the sensitivity of the HAWC observatory to gamma-ray bursts

    Full text link
    We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn could help to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles

    Teaching of Energy Issues: A debate proposal for a GLobal Reorientation

    Get PDF
    The growing awareness of serious difficulties in the learning of energy issues has produced a great deal of research, most of which is focused on specific conceptual aspects. In our opinion, the difficulties pointed out in the literature are interrelated and connected to other aspects (conceptual as well as procedural and axiological), which are not sufficiently taken into account in previous research. This paper aims to carry out a global analysis in order to avoid the more limited approaches that deal only with individual aspects. From this global analysis we have outlined 24 propositions that are put forward for debate to lay the foundations for a profound reorientation of the teaching of energy topics in upper high school courses, in order to facilitate a better scientific understanding of these topics, avoid many students' misconceptions and enhance awareness of the current situation of planetary emergency

    Defining the Critical Hurdles in Cancer Immunotherapy

    Get PDF
    ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
    corecore