43 research outputs found

    Active Galactic Nuclei: Jets as the Source of Hadrons and Neutrinos

    Get PDF
    Active galactic nuclei are extragalactic sources, and their relativistic hot-plasma jets are believed to be the main candidates of the cosmic-ray origin, above the so-called knee region of the cosmic-ray spectrum. Relativistic shocks, either single or multiple, have been observed or been theorized to be forming within relativistic jet channels in almost all active galactic nuclei sources. The acceleration of non-thermal particles (e.g. electrons, protons) via the shock Fermi acceleration mechanism, is believed to be mainly responsible for the power-law energy distribution of the observed cosmic-rays, which in very high energies can consequently radiate high energy gamma-rays and neutrinos, through related radiation channels. Here, we will focus on the primary particle (hadronic) shock acceleration mechanism, and we will present a comparative simulation study of the properties of single and multiple relativistic shocks, which occur in AGN jets. We will show that the role of relativistic (quasi-parallel either quasi-perpendicular) shocks, is quite important since it can dramatically alter the primary CR spectral indices and acceleration eciencies. These properties being carried onto gamma-ray and neutrino radiation characteristics, makes the combination of them a quite appealing theme for relativistic plasma and shock acceleration physics, as well as observational cosmic-ray, gamma-ray and neutrino astronomy

    Cosmic Plasmas and Electromagnetic Phenomena

    Get PDF
    During the past few decades, plasma science has witnessed a great growth in laboratory studies, in simulations, and in space. Plasma is the most common phase of ordinary matter in the universe. It is a state in which ionized matter (even as low as 1%) becomes highly electrically conductive. As such, long-range electric and magnetic fields dominate its behavior. Cosmic plasmas are mostly associated with stars, supernovae, pulsars and neutron stars, quasars and active galaxies at the vicinities of black holes (i.e., their jets and accretion disks). Cosmic plasma phenomena can be studied with different methods, such as laboratory experiments, astrophysical observations, and theoretical/computational approaches (i.e., MHD, particle-in-cell simulations, etc.). They exhibit a multitude of complex magnetohydrodynamic behaviors, acceleration, radiation, turbulence, and various instability phenomena. This Special Issue addresses the growing need of the plasma science principles in astrophysics and presents our current understanding of the physics of astrophysical plasmas, their electromagnetic behaviors and properties (e.g., shocks, waves, turbulence, instabilities, collimation, acceleration and radiation), both microscopically and macroscopically. This Special Issue provides a series of state-of-the-art reviews from international experts in the field of cosmic plasmas and electromagnetic phenomena using theoretical approaches, astrophysical observations, laboratory experiments, and state-of-the-art simulation studies

    Neutrinos from photo-hadronic interactions in Pks2155-304

    Full text link
    The high-peaked BL Lac object Pks2155-304 shows high variability at multiwavelengths, i.e. from optical up to TeV energies. A giant flare of around 1 hour at X-ray and TeV energies was observed in 2006. In this context, it is essential to understand the physical processes in terms of the primary spectrum and the radiation emitted, since high-energy emission can arise in both leptonic and hadronic processes. In this contribution, we investigate the possibility of neutrino production in photo-hadronic interactions. In particular, we predict a direct correlation between optical and TeV energies at sufficiently high optical radiation fields. We show that in the blazar Pks2155-304, the optical emission in the low-state is sufficient to lead to photo-hadronic interactions and therefore to the production of high-energy photons.Comment: contribution to RICAP 2009 and ICRC 2009 - both papers are combined in one draft. 11 pages, 3 figure

    Recollimation Shocks in Magnetized Relativistic Jets

    Get PDF
    We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas-pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, modifying significantly the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behaviour depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.Comment: 14 pages, 15 figures and 1 table, accepted for publication in Ap

    Microscopic processes in global relativistic jets containing helical magnetic fields

    Get PDF
    In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron–proton (e−–p+) and electron–positron (e±) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e−–p+ jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e± jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields

    Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields

    Get PDF
    In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron–proton ( e − – p + ) and electron–positron ( e ± ) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e − – p + jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e ± jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.This work is supported by NSF AST-0908010, AST-0908040, NASA-NNX09AD16G, NNX12AH06G, NNX13AP-21G, and NNX13AP14G grants. The work of J.N. and O.K. has been supported by Narodowe Centrum Nauki through research project DEC-2013/10/E/ST9/00662. Y.M. is supported by the ERC Synergy Grant “BlackHoleCam—Imaging the Event Horizon of Black Holes” (Grant No. 610058). M.P. acknowledges support through grant PO 1508/1-2 of the Deutsche Forschungsgemeinschaft. Simulations were performed using Pleiades and Endeavor facilities at NASA Advanced Supercomputing (NAS), and using Gordon and Comet at The San Diego Supercomputer Center (SDSC), and Stampede at The Texas Advanced Computing Center, which are supported by the NSF. This research was started during the program “Chirps, Mergers and Explosions: The Final Moments of Coalescing Compact Binaries” at the Kavli Institute for Theoretical Physics, which is supported by the National Science Foundation under grant No. PHY05-51164. The first velocity shear results using an electron positron plasma were obtained during the Summer Aspen workshop “Astrophysical Mechanisms of Particle Acceleration and Escape from the Accelerators” held at the Aspen Center for Physics (1–15 September 2013). We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI

    The interplay between the Rab27A effectors Slp4-a and MyRIP controls hormone-evoked Weibel-Palade body exocytosis.

    Get PDF
    Weibel-Palade body (WPB) exocytosis underlies hormone-evoked VWF secretion from endothelial cells (ECs). We identify new endogenous components of the WPB: Rab3B, Rab3D, and the Rab27A/Rab3 effector Slp4-a (granuphilin), and determine their role in WPB exocytosis. We show that Rab3B, Rab3D, and Rab27A contribute to Slp4-a localization to WPBs. siRNA knockdown of Slp4-a, MyRIP, Rab3B, Rab3D, Rab27A, or Rab3B/Rab27A, or overexpression of EGFP-Slp4-a or EGFP-MyRIP showed that Slp4-a is a positive and MyRIP a negative regulator of WPB exocytosis and that Rab27A alone mediates these effects. We found that ECs maintain a constant amount of cellular Rab27A irrespective of the WPB pool size and that Rab27A (and Rab3s) cycle between WPBs and a cytosolic pool. The dynamic redistribution of Rab proteins markedly decreased the Rab27A concentration on individual WPBs with increasing WPB number per cell. Despite this, the probability of WPB release was independent of WPB pool size showing that WPB exocytosis is not determined simply by the absolute amount of Rab27A and its effectors on WPBs. Instead, we propose that the probability of release is determined by the fractional occupancy of WPB-Rab27A by Slp4-a and MyRIP, with the balance favoring exocytosis
    corecore