131 research outputs found

    Noninvasive cardiac output and central systolic pressure from cuff-pressure and pulse wave velocity

    Get PDF
    Goal: We introduce a novel approach to estimate cardiac output (CO) and central systolic blood pressure (cSBP) from noninvasive measurements of peripheral cuff-pressure and carotid-to-femoral pulse wave velocity (cf-PWV). Methods: The adjustment of a previously validated one-dimensional arterial tree model is achieved via an optimization process. In the optimization loop, compliance and resistance of the generic arterial tree model as well as aortic flow are adjusted so that simulated brachial systolic and diastolic pressures and cf-PWV converge towards the measured brachial systolic and diastolic pressures and cf-PWV. The process is repeated until full convergence in terms of both brachial pressures and cf-PWV is reached. To assess the accuracy of the proposed framework, we implemented the algorithm on in vivo anonymized data from 20 subjects and compared the method-derived estimates of CO and cSBP to patient-specific measurements obtained with Mobil-O-Graph apparatus (central pressure) and two-dimensional transthoracic echocardiography (aortic blood flow). Results: Both CO and cSBP estimates were found to be in good agreement with the reference values achieving an RMSE of 0.36 L/min and 2.46 mmHg, respectively. Low biases were reported, namely -0.04 +/- 0.36 L/min for CO predictions and -0.27 +/- 2.51 mmHg for cSBP predictions. Significance: Our one-dimensional model can be successfully "tuned" to partially patient-specific standards by using noninvasive, easily obtained peripheral measurement data. The in vivo evaluation demonstrated that this method can potentially be used to obtain central aortic hemodynamic parameters in a noninvasive and accurate way

    Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: A systematic review and meta-analysis

    Get PDF
    Arterial stiffness may be a cause of cerebral small vessel disease and cognitive impairment. We therefore performed a systematic review and meta-analysis of studies on the association between stiffness, cerebral small vessel disease and cognitive impairment. For the associations between stiffness (i.e. carotid-femoral pulse wave velocity (cfPWV), brachial-ankle PVVV (baPWV), carotid stiffness and pulse pressure) on the one hand and cerebral small vessel disease and cognitive impairment on the other, we identified 23 (n = 15,666/20 cross-sectional; 1 longitudinal; 2 combined cross-sectional/longitudinal) and 41 studies (n= 57,671/26 cross-sectional; 11 longitudinal; 4 combined cross-sectional/longitudinal), respectively. Pooled analyses of cross-sectional studies showed that greater stiffness was associated with markers of cerebral small vessel disease with odds ratios, per +1 SD, of 1.29-1.32 (

    Total arterial compliance estimated by a novel method and all-cause mortality in the elderly: the PROTEGER study

    Get PDF
    Aortic stiffness, assessed by carotid-to-femoral pulse wave velocity (PWV), often fails to predict cardiovascular (CV) risk and mortality in the very elderly. This may be due to the non-linear association between PWV and compliance or to blood pressure decrease in the frailest subjects. Total arterial compliance (C T) is the most relevant arterial property regarding CV function, compared to local or regional arterial stiffness. A new method for C T estimation, based on PWV, was recently proposed. We aimed to investigate the value of C T to predict all-cause mortality at the elderly. PWV was estimated in 279 elderly subjects (85.5 ± 7.0years) who were followed up for a mean period of 12.8 ± 6.3months. C T was estimated by the formula C T = k × PWV−2; coefficient k is body-size dependent based on previous in silico simulations. Herein, k was adjusted for body mass index (BMI) with a 10% change in BMI corresponding to almost 11% change in k. For a reference BMI = 26.2kg/m2, k = 37. Survivors (n = 185) and non-survivors (n = 94) had similar PWV (14.2 ± 3.6 versus 14.9 ± 3.8m/s, respectively; p = 0.139). In contrast, non-survivors had significantly lower C T than survivors (0.198 ± 0.128 versus 0.221 ± 0.1mL/mmHg; p = 0.018). C T was a significant predictor of mortality (p = 0.022, odds ratio = 0.326), while PWV was not (p = 0.202), even after adjustment for gender, mean pressure and heart rate. Age was an independent determinant of C T (p = 0.016), but not of PWV. C T, estimated by a novel method, can predict all-cause mortality in the elderly. C T may be more sensitive arterial biomarker than PWV regarding CV risk assessment

    Interrelated modulation of endothelial function in Behcet's disease by clinical activity and corticosteroid treatment

    Get PDF
    Corticosteroids are commonly used in empirical treatment of Behçet's disease (BD), a systemic inflammatory condition associated with reversible endothelial dysfunction. In the present study we aimed to dissect the effects of clinical disease activity and chronic or short-term corticosteroid treatment on endothelial function in patients with BD. In a case-control, cross-sectional study, we assessed endothelial function by endothelium dependent flow mediated dilatation (FMD) at the brachial artery of 87 patients, who either were or were not receiving chronic corticosteroid treatment, and exhibiting variable clinical disease activity. Healthy individuals matched for age and sex served as controls. Endothelial function was also assessed in a prospective study of 11 patients before and after 7 days of treatment with prednisolone given at disease relapse (20 mg/day). In the cross-sectional component of the study, FMD was lower in patients than in control individuals (mean ± standard error: 4.1 ± 0.4% versus 5.7 ± 0.2%, P = 0.003), whereas there was a significant interaction between the effects of corticosteroids and disease activity on endothelial function (P = 0.014, two-factor analysis of variance). Among patients with inactive BD, those who were not treated with corticosteroids (n = 33) had FMD comparable to that in healthy control individuals, whereas those treated with corticosteroids (n = 15) had impaired endothelial function (P = 0.023 versus the respective control subgroup). In contrast, among patients with active BD, those who were not treated with corticosteroids (n = 20) had lower FMD than control individuals (P = 0.007), but in those who were receiving corticosteroids (n = 19) the FMD values were comparable to those in control individuals. Moreover, FMD was significantly improved after 7 days of prednisolone administration (3.7 ± 0.9% versus 7.6 ± 1.4%, P = 0.027). Taken together, these results imply that although corticosteroid treatment may impair endothelial function per se during the remission phase of the inflammatory process, it restores endothelial dysfunction during active BD by counteracting the harmful effects of relapsing inflammation

    Ambulatory blood pressure trajectories and blood pressure variability in kidney transplant recipients: a comparative study against chronic kidney disease patients

    Get PDF
    Background Hypertension is a major cardiovascular risk factor in both kidney transplant recipients (KTRs) and patients with chronic kidney disease (CKD). Ambulatory blood pressure monitoring (ABPM) is considered the gold-standard method for hypertension management in these subjects. This is the first study evaluating the full ambulatory blood pressure (BP) profile and short-term BP variability (BPV) in KTRs versus CKD patients without kidney replacement therapy. Methods Ninety-three KTRs were matched with 93 CKD patients for age, sex, and estimated glomerular filtration rate. All participants underwent 24-hour ABPM. Mean ambulatory BP levels, BP trajectories, and BPV indices (standard deviation [SD], weighted SD, and average real variability) were compared between the two groups. Results There were no significant between-group differences in 24-hour systolic BP (SBP)/diastolic BP (DBP) (KTRs: 126.9 ± 13.1/79.1 ± 7.9 mmHg vs. CKD: 128.1 ± 11.2/77.9 ± 8.1 mmHg, p = 0.52/0.29), daytime SBP/DBP and nighttime SBP; nighttime DBP was slightly higher in KTRs (KTRs: 76.5 ± 8.8 mmHg vs. CKD: 73.8 ± 8.8 mmHg, p = 0.04). Repeated measurements analysis of variance showed a significant effect of time on both ambulatory SBP and DBP (SBP: F = [19, 3002] = 11.735, p < 0.001, partial η2 = 0.069) but not of KTR/CKD status (SBP: F = [1, 158] = 0.668, p = 0.42, partial η2 = 0.004). Ambulatory systolic/diastolic BPV indices were not different between KTRs and CKD patients, except for 24-hour DBP SD that was slightly higher in the latter group (KTRs: 10.2 ± 2.2 mmHg vs. CKD: 10.9 ± 2.6 mmHg, p = 0.04). No differences were noted in dipping pattern between the two groups. Conclusion Mean ambulatory BP levels, BP trajectories, and short-term BPV indices are not significantly different between KTRs and CKD patients, suggesting that KTRs have a similar ambulatory BP profile compared to CKD patients without kidney replacement therapy

    Twenty-Four-Hour Central (Aortic) Systolic Blood Pressure: Reference Values and Dipping Patterns in Untreated Individuals.

    Get PDF
    Central (aortic) systolic blood pressure (cSBP) is the pressure seen by the heart, the brain, and the kidneys. If properly measured, cSBP is closer associated with hypertension-mediated organ damage and prognosis, as compared with brachial SBP (bSBP). We investigated 24-hour profiles of bSBP and cSBP, measured simultaneously using Mobilograph devices, in 2423 untreated adults (1275 women; age, 18-94 years), free from overt cardiovascular disease, aiming to develop reference values and to analyze daytime-nighttime variability. Central SBP was assessed, using brachial waveforms, calibrated with mean arterial pressure (MAP)/diastolic BP (cSBPMAP/DBPcal), or bSBP/diastolic blood pressure (cSBPSBP/DBPcal), and a validated transfer function, resulting in 144 509 valid brachial and 130 804 valid central measurements. Averaged 24-hour, daytime, and nighttime brachial BP across all individuals was 124/79, 126/81, and 116/72 mm Hg, respectively. Averaged 24-hour, daytime, and nighttime values for cSBPMAP/DBPcal were 128, 128, and 125 mm Hg and 115, 117, and 107 mm Hg for cSBPSBP/DBPcal, respectively. We pragmatically propose as upper normal limit for 24-hour cSBPMAP/DBPcal 135 mm Hg and for 24-hour cSBPSBP/DBPcal 120 mm Hg. bSBP dipping (nighttime-daytime/daytime SBP) was -10.6 % in young participants and decreased with increasing age. Central SBPSBP/DBPcal dipping was less pronounced (-8.7% in young participants). In contrast, cSBPMAP/DBPcal dipping was completely absent in the youngest age group and less pronounced in all other participants. These data may serve for comparison in various diseases and have potential implications for refining hypertension diagnosis and management. The different dipping behavior of bSBP versus cSBP requires further investigation

    The additive value of femoral ultrasound for subclinical atherosclerosis assessment in a single center cohort of 962 adults, including high risk patients with Rheumatoid Arthritis, Human Immunodeficiency Virus infection and Type 2 Diabetes Mellitus.

    No full text
    <p>The additive value of femoral ultrasound for subclinical atherosclerosis assessment in a single center cohort of 962 adults, including high risk patients with Rheumatoid Arthritis, Human Immunodeficiency Virus infection and Type 2 Diabetes Mellitus.</p

    Arterial Stiffness in Hypertension and Function of Large Arteries

    No full text
    International audienceAbstract BACKGROUND Arterial stiffness—typically assessed from non-invasive measurement of pulse wave velocity along a straight portion of the vascular tree between the right common carotid and femoral arteries—is a reliable predictor of cardiovascular risk in patients with essential hypertension. METHODS We reviewed how carotid-femoral pulse wave velocity increases with age and is significantly higher in hypertension (than in age- and gender-matched individuals without hypertension), particularly when hypertension is associated with diabetes mellitus. RESULTS From the elastic aorta to the muscular peripheral arteries of young healthy individuals, there is a gradual but significant increase in stiffness, with a specific gradient. This moderates the transmission of pulsatile pressure towards the periphery, thus protecting the microcirculatory network. The heterogeneity of stiffness between the elastic and muscular arteries causes the gradient to disappear or be inversed with aging, particularly in long-standing hypertension. CONCLUSIONS In hypertension therefore, pulsatile pressure transmission to the microcirculation is augmented, increasing the potential risk of damage to the brain, the heart, and the kidney. Furthermore, elevated pulse pressure exacerbates end-stage renal disease, particularly in older hypertensive individuals. With increasing age, the elastin content of vessel walls declines throughout the arterial network, and arterial stiffening increases further due to the presence of rigid wall material such as collagen, but also fibronectin, proteoglycans, and vascular calcification. Certain genes, mainly related to angiotensin and/or aldosterone, affect this aging process and contribute to the extent of arterial stiffness, which can independently affect both forward and reflected pressure waves
    • 

    corecore